Neural tuning and representational geometry

计算机科学 忠诚 信息几何学 神经解码 代表(政治) 刺激(心理学) 神经科学 人工智能 几何学 解码方法 数学 心理学 算法 认知心理学 政治 曲率 法学 电信 政治学 标量曲率
作者
Nikolaus Kriegeskorte,Xue-Xin Wei
出处
期刊:Nature Reviews Neuroscience [Nature Portfolio]
卷期号:22 (11): 703-718 被引量:147
标识
DOI:10.1038/s41583-021-00502-3
摘要

A central goal of neuroscience is to understand the representations formed by brain activity patterns and their connection to behaviour. The classic approach is to investigate how individual neurons encode stimuli and how their tuning determines the fidelity of the neural representation. Tuning analyses often use the Fisher information to characterize the sensitivity of neural responses to small changes of the stimulus. In recent decades, measurements of large populations of neurons have motivated a complementary approach, which focuses on the information available to linear decoders. The decodable information is captured by the geometry of the representational patterns in the multivariate response space. Here we review neural tuning and representational geometry with the goal of clarifying the relationship between them. The tuning induces the geometry, but different sets of tuned neurons can induce the same geometry. The geometry determines the Fisher information, the mutual information and the behavioural performance of an ideal observer in a range of psychophysical tasks. We argue that future studies can benefit from considering both tuning and geometry to understand neural codes and reveal the connections between stimuli, brain activity and behaviour. Developing a better understanding of neural codes should enable the links between stimuli, brain activity and behaviour to become clearer. In this Perspective, Kriegeskorte and Wei examine neural tuning and representational geometry — complementary approaches used to understand neural codes — and the relationship between them.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
姜同心发布了新的文献求助10
1秒前
清秀颜演完成签到,获得积分10
1秒前
共享精神应助安可瓶子采纳,获得10
1秒前
卜小卜完成签到,获得积分10
1秒前
科研小生发布了新的文献求助30
1秒前
wyyj发布了新的文献求助30
1秒前
嘟嘟发布了新的文献求助10
2秒前
雪白炎彬完成签到,获得积分10
2秒前
2秒前
泽山咸完成签到,获得积分10
2秒前
奋斗土豆完成签到 ,获得积分10
2秒前
Leach完成签到 ,获得积分10
2秒前
千空应助王逗逗采纳,获得10
3秒前
天黑黑发布了新的文献求助10
3秒前
bi完成签到 ,获得积分20
3秒前
祁忆完成签到,获得积分10
3秒前
3秒前
Jiang发布了新的文献求助10
3秒前
Hello应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
Xiaoxiao应助科研通管家采纳,获得10
4秒前
西瓜完成签到,获得积分10
4秒前
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
5秒前
橘子完成签到,获得积分10
5秒前
5秒前
zzz发布了新的文献求助10
5秒前
Shine应助科研通管家采纳,获得10
5秒前
5秒前
Xiaoxiao应助科研通管家采纳,获得10
5秒前
CodeCraft应助王孝松采纳,获得10
5秒前
5秒前
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5067327
求助须知:如何正确求助?哪些是违规求助? 4289104
关于积分的说明 13362097
捐赠科研通 4108613
什么是DOI,文献DOI怎么找? 2249798
邀请新用户注册赠送积分活动 1255239
关于科研通互助平台的介绍 1187762