Spatio-Temporal-Spectral Hierarchical Graph Convolutional Network With Semisupervised Active Learning for Patient-Specific Seizure Prediction

计算机科学 脑电图 人工智能 图形 卷积神经网络 模式识别(心理学) 癫痫 机器学习 神经科学 心理学 理论计算机科学
作者
Yang Li,Yu Liu,Yuzhu Guo,Xiaofeng Liao,Bin Hu,Tao Yu
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:52 (11): 12189-12204 被引量:120
标识
DOI:10.1109/tcyb.2021.3071860
摘要

Graph theory analysis using electroencephalogram (EEG) signals is currently an advanced technique for seizure prediction. Recent deep learning approaches, which fail to fully explore both the characterizations in EEGs themselves and correlations among different electrodes simultaneously, generally neglect the spatial or temporal dependencies in an epileptic brain and, thus, produce suboptimal seizure prediction performance consequently. To tackle this issue, in this article, a patient-specific EEG seizure predictor is proposed by using a novel spatio-temporal-spectral hierarchical graph convolutional network with an active preictal interval learning scheme (STS-HGCN-AL). Specifically, since the epileptic activities in different brain regions may be of different frequencies, the proposed STS-HGCN-AL framework first infers a hierarchical graph to concurrently characterize an epileptic cortex under different rhythms, whose temporal dependencies and spatial couplings are extracted by a spectral-temporal convolutional neural network and a variant self-gating mechanism, respectively. Critical intrarhythm spatiotemporal properties are then captured and integrated jointly and further mapped to the final recognition results by using a hierarchical graph convolutional network. Particularly, since the preictal transition may be diverse from seconds to hours prior to a seizure onset among different patients, our STS-HGCN-AL scheme estimates an optimal preictal interval patient dependently via a semisupervised active learning strategy, which further enhances the robustness of the proposed patient-specific EEG seizure predictor. Competitive experimental results validate the efficacy of the proposed method in extracting critical preictal biomarkers, indicating its promising abilities in automatic seizure prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
丘比特应助无言采纳,获得10
刚刚
dou完成签到,获得积分10
刚刚
CC完成签到,获得积分10
刚刚
我是老大应助靓丽冬灵采纳,获得10
刚刚
1秒前
qphys完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
自觉誉发布了新的文献求助20
2秒前
飞快的平彤完成签到,获得积分20
2秒前
2秒前
wenbin完成签到,获得积分20
2秒前
在水一方应助afterly采纳,获得10
2秒前
2秒前
平常安发布了新的文献求助10
2秒前
help3q发布了新的文献求助10
2秒前
yanziwu94发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
喵喵发布了新的文献求助10
5秒前
王二八完成签到,获得积分10
5秒前
冷酷飞飞完成签到 ,获得积分10
6秒前
大个应助自由秋荷采纳,获得10
7秒前
一事无成的研一完成签到 ,获得积分10
7秒前
壶十二发布了新的文献求助10
7秒前
Karma发布了新的文献求助10
7秒前
搜集达人应助王檬采纳,获得10
7秒前
8秒前
爆米花应助sevenseven采纳,获得10
8秒前
nyfz2002发布了新的文献求助10
8秒前
8秒前
曲奇发布了新的文献求助10
9秒前
Lance应助Mrs.yang采纳,获得10
9秒前
喵喵完成签到,获得积分10
10秒前
蒙萌葫完成签到,获得积分10
10秒前
10秒前
klpkyx应助科研通管家采纳,获得300
10秒前
Sunshine发布了新的文献求助20
10秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2000
줄기세포 생물학 1000
Biodegradable Embolic Microspheres Market Insights 888
Quantum reference frames : from quantum information to spacetime 888
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
La RSE en pratique 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4463364
求助须知:如何正确求助?哪些是违规求助? 3926073
关于积分的说明 12183349
捐赠科研通 3578665
什么是DOI,文献DOI怎么找? 1966124
邀请新用户注册赠送积分活动 1004816
科研通“疑难数据库(出版商)”最低求助积分说明 899227