An imaging-based approach predicts clinical outcomes in prostate cancer through a novel support vector machine classification

前列腺癌 医学 支持向量机 癌症 癌症影像学 前列腺 肿瘤科 机器学习 人工智能 医学物理学 内科学 计算机科学
作者
Yu‐Dong Zhang,Jing Wang,Chen‐Jiang Wu,Meiling Bao,Hai Li,Xiaoning Wang,Jun Tao,Hai‐Bin Shi
出处
期刊:Oncotarget [Impact Journals LLC]
卷期号:7 (47): 78140-78151 被引量:45
标识
DOI:10.18632/oncotarget.11293
摘要

// Yu-Dong Zhang 1 , Jing Wang 2 , Chen-Jiang Wu 1 , Mei-Ling Bao 3 , Hai Li 3 , Xiao-Ning Wang 1 , Jun Tao 4 and Hai-Bin Shi 1 1 Department of Radiology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China 2 Center for Medical Device Evaluation, CFDA, Beijing, China 3 Department of Pathology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China 4 Department of Urology, the First Affiliated Hospital with Nanjing Medical University, Nanjing, China Correspondence to: Hai-Bin Shi, email: // Keywords : prostate cancer; biochemical recurrence; MRI; radical prostatectomy; support vector machine Received : April 27, 2016 Accepted : August 11, 2016 Published : August 15, 2016 Abstract Preoperatively predict the probability of Prostate cancer (PCa) biochemical recurrence (BCR) is of definite clinical relevance. The purpose of this study was to develop an imaging-based approach in the prediction of 3-years BCR through a novel support vector machine (SVM) classification. We collected clinicopathologic and MR imaging datasets in 205 patients pathologically confirmed PCa after radical prostatectomy. Univariable and multivariable analyses were used to assess the association between MR findings and 3-years BCR, and modeled the imaging variables and follow-up data to predict 3-year PCa BCR using SVM analysis. The performance of SVM was compared with conventional Logistic regression (LR) and D'Amico risk stratification scheme by area under the receiver operating characteristic curve (Az) analysis. We found that SVM had significantly higher Az (0.959 vs. 0.886; p = 0.007), sensitivity (93.3% vs. 83.3%; p = 0.025), specificity (91.7% vs. 77.2%; p = 0.009) and accuracy (92.2% vs. 79.0%; p = 0.006) than LR analysis. Performance of popularized D'Amico scheme was effectively improved by adding MRI-derived variables (Az: 0.970 vs. 0.859, p < 0.001; sensitivity: 91.7% vs. 86.7%, p = 0.031; specificity: 94.5% vs. 78.6%, p = 0.001; and accuracy: 93.7% vs. 81.0%, p = 0.007). Additionally, beside pathological Gleason score (hazard ratio [HR] = 1.560, p = 0.008), surgical-T3b (HR = 4.525, p < 0.001) and positive surgical margin (HR = 1.314, p = 0.007), apparent diffusion coefficient (HR = 0.149, p = 0.035) was the only independent imaging predictor of time to PSA failure. Therefore, We concluded that imaging-based approach using SVM was superior to LR analysis in predicting PCa outcome. Adding MR variables improved the performance of D'Amico scheme.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
辛勤的苡给辛勤的苡的求助进行了留言
1秒前
1秒前
1秒前
2秒前
脑洞疼应助24816848采纳,获得10
2秒前
TinTin完成签到,获得积分10
2秒前
落后立果完成签到,获得积分10
2秒前
Liou完成签到,获得积分0
2秒前
2秒前
3秒前
Jasper应助ChengYonghui采纳,获得10
3秒前
王丹妮完成签到,获得积分10
4秒前
ShengQ完成签到,获得积分10
4秒前
4秒前
Psccc完成签到,获得积分10
4秒前
纯情的天奇完成签到 ,获得积分10
5秒前
梅花发布了新的文献求助10
5秒前
5秒前
王莉完成签到,获得积分10
5秒前
adore发布了新的文献求助10
6秒前
Anna完成签到,获得积分10
6秒前
7秒前
丁又菡发布了新的文献求助10
7秒前
hooo发布了新的文献求助10
7秒前
djejje完成签到 ,获得积分10
8秒前
思源应助来日方长采纳,获得10
8秒前
田様应助娟娟采纳,获得10
9秒前
9秒前
Larvenpiz完成签到,获得积分10
9秒前
luo发布了新的文献求助10
9秒前
10秒前
10秒前
10秒前
11秒前
11秒前
77发布了新的文献求助10
11秒前
flymove完成签到,获得积分10
11秒前
顺心凡发布了新的文献求助10
11秒前
凯凯完成签到,获得积分10
12秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Surviving Emotional Work for Teachers 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4002947
求助须知:如何正确求助?哪些是违规求助? 3542254
关于积分的说明 11284229
捐赠科研通 3279571
什么是DOI,文献DOI怎么找? 1808680
邀请新用户注册赠送积分活动 884778
科研通“疑难数据库(出版商)”最低求助积分说明 810496