Skeleton-Based Explainable Bodily Expressed Emotion Recognition Through Graph Convolutional Networks

计算机科学 骨架(计算机编程) 图形 情绪识别 人工智能 卷积神经网络 模式识别(心理学) 自然语言处理 语音识别 理论计算机科学 程序设计语言
作者
Esam Ghaleb,Andre Mertens,Stylianos Asteriadis,Gerhard Weiß
标识
DOI:10.1109/fg52635.2021.9667052
摘要

Much of the focus on emotion recognition has gone into the face and voice as expressive channels, whereas bodily expressions of emotions are understudied. Moreover, current studies lack the explainability of computational features of body movements related to emotional expressions. Perceptual research on body parts' movements shows that features related to the arms' movements are correlated the most with human perception of emotions. In this paper, our research aims at presenting an explainable approach for bodily expressed emotion recognition. It utilizes the body joints of the human skeleton, representing them as a graph, which is used in Graph Convolutional Networks (GCNs). We improve the modelling of the GCNs by using spatial attention mechanisms based on body parts, i.e. arms, legs and torso. Our study presents a state-of-the-art explainable approach supported by experimental results on two challenging datasets. Evaluations show that the proposed methodology offers accurate performance and explainable decisions. The methodology demonstrates which body part contributes the most in its inference, showing the significance of arm movements in emotion recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuejie完成签到,获得积分10
刚刚
5秒前
兴奋小丸子完成签到,获得积分10
9秒前
李爱国应助doubleshake采纳,获得10
11秒前
酷波er应助果粒红豆豆采纳,获得10
11秒前
活力沅完成签到,获得积分10
12秒前
熊大对熊二说熊要有个熊样完成签到,获得积分10
13秒前
欢呼海露完成签到,获得积分10
13秒前
无辜牛青完成签到,获得积分10
15秒前
双椒兔丁完成签到 ,获得积分20
17秒前
21秒前
25秒前
cx111发布了新的文献求助10
27秒前
chuling发布了新的文献求助10
29秒前
Ignis发布了新的文献求助10
29秒前
林轩完成签到 ,获得积分10
30秒前
小白应助海与采纳,获得10
31秒前
德鲁猪完成签到,获得积分10
31秒前
思源应助糟糕的铁锤采纳,获得20
31秒前
阿飞飞完成签到,获得积分10
33秒前
xunzhi完成签到 ,获得积分10
35秒前
NexusExplorer应助科研通管家采纳,获得10
36秒前
棕熊熊应助科研通管家采纳,获得10
36秒前
斯文败类应助科研通管家采纳,获得10
36秒前
科研通AI2S应助科研通管家采纳,获得10
36秒前
Orange应助科研通管家采纳,获得10
36秒前
小二郎应助科研通管家采纳,获得10
36秒前
chuling完成签到,获得积分10
36秒前
小郭子应助科研通管家采纳,获得20
36秒前
SciGPT应助科研通管家采纳,获得10
36秒前
36秒前
烟花应助科研通管家采纳,获得10
37秒前
大个应助科研通管家采纳,获得10
37秒前
37秒前
37秒前
Ignis完成签到,获得积分10
38秒前
平常的毛豆应助cx111采纳,获得10
38秒前
lxlcx应助沙不凡采纳,获得20
44秒前
44秒前
邹友亮完成签到,获得积分10
44秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843815
求助须知:如何正确求助?哪些是违规求助? 3386184
关于积分的说明 10544072
捐赠科研通 3106883
什么是DOI,文献DOI怎么找? 1711228
邀请新用户注册赠送积分活动 824010
科研通“疑难数据库(出版商)”最低求助积分说明 774409