Community‐based mosquito surveillance: an automatic mosquito‐on‐human‐skin recognition system with a deep learning algorithm

人工智能 计算机科学 深度学习 鉴定(生物学) 构造(python库) 机器学习 卷积神经网络 公民科学 可视化 模式识别(心理学) 生态学 生物 植物 程序设计语言
作者
Song‐Quan Ong,N. Gomesh,Umi Kalsom Yusof,Hamdan Ahmad
出处
期刊:Pest Management Science [Wiley]
卷期号:78 (10): 4092-4104 被引量:14
标识
DOI:10.1002/ps.7028
摘要

Public community engagement is crucial for mosquito surveillance programs. To support community participation, one of the approaches is assisting the public in recognizing the mosquitoes that carry pathogens. Therefore, this study aims to build an automatic recognition system to identify mosquitos at the public community level. We construct a customized image dataset consisting of three mosquito species in either damaged or un-damaged body conditions. To distinguish the mosquito in harsh conditions, we explore two state-of-the-art deep learning (DL) architectures: (i) a freezing convolutional base, with partial trainable weights, and (ii) training the entire model with most of the trainable weights. We project a weighted feature map on different layers of the model to visualize the morphological region used by the model in classification and compared it with the morphological key used by the expert.It was found that the model with architecture two and the Adam optimizer achieves at least 98% accuracy in mosquito and conditions identification and when implemented on an independent dataset, the Xception model generalizes the best result with an accuracy of 0.7775 and 0.795 precision. Moreover, most of the morphological regions used by the model are able to match those of the human expert.We report a customized DL model for performing pest mosquito taxonomy identification, and through visualization, some regions using computers to discriminate mosquito species could be adopted later in systematic identification. © 2022 Society of Chemical Industry.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酷波er应助念九采纳,获得10
刚刚
橘子发布了新的文献求助10
1秒前
江璃发布了新的文献求助10
1秒前
1秒前
汉堡包应助可爱的石头采纳,获得30
1秒前
mojito发布了新的文献求助10
1秒前
2秒前
3秒前
罐罐儿应助Tonald Yang采纳,获得10
3秒前
ZhaoY完成签到,获得积分10
3秒前
棠真应助zhaoying采纳,获得10
3秒前
聪慧的中心完成签到 ,获得积分20
4秒前
4秒前
4秒前
4秒前
5秒前
Siri烤布蕾发布了新的文献求助10
5秒前
5秒前
jogrgr完成签到,获得积分10
5秒前
能干寻桃完成签到 ,获得积分10
5秒前
Dal发布了新的文献求助10
6秒前
7秒前
hzhang完成签到,获得积分10
8秒前
laissez_fairy完成签到,获得积分10
8秒前
FYF完成签到 ,获得积分20
8秒前
天气好的话完成签到,获得积分10
9秒前
独木舟完成签到,获得积分10
9秒前
xiaohe发布了新的文献求助10
9秒前
chigga发布了新的文献求助10
9秒前
01完成签到,获得积分10
9秒前
9秒前
星星2012发布了新的文献求助10
9秒前
CHEN应助毒蛇如我采纳,获得10
9秒前
支雨泽发布了新的文献求助10
9秒前
江璃完成签到,获得积分10
9秒前
10秒前
zxc完成签到,获得积分10
10秒前
苏姗姗完成签到,获得积分10
10秒前
bjut发布了新的文献求助10
10秒前
11秒前
高分求助中
The world according to Garb 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Mass producing individuality 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3820351
求助须知:如何正确求助?哪些是违规求助? 3363257
关于积分的说明 10422060
捐赠科研通 3081685
什么是DOI,文献DOI怎么找? 1695190
邀请新用户注册赠送积分活动 814957
科研通“疑难数据库(出版商)”最低求助积分说明 768692