Integrated Machine Learning and Structure-Based Virtual Screening Identify Osimertinib as a TNIK Inhibitor for Idiopathic Pulmonary Fibrosis

特发性肺纤维化 奥西默替尼 虚拟筛选 癌症研究 IC50型 化学 药物发现 药理学 医学 受体 生物化学 内科学 表皮生长因子受体 体外 埃罗替尼
作者
Likun Zhao,Huanxiang Liu,Xiaojun Yao,Xiuling Ma,Bo Liu,Bin Li,Henry H. Y. Tong,Qianqian Zhang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:65 (19): 10673-10687
标识
DOI:10.1021/acs.jcim.5c01521
摘要

Traf2-and Nck-interacting kinase (TNIK) has been implicated in fibrosis-associated signaling pathways and has recently emerged as a promising therapeutic target for idiopathic pulmonary fibrosis (IPF). In this study, we employed an integrated strategy combining machine learning-based prediction and structure-based virtual screening to repurpose drugs from the DrugBank database as potential TNIK inhibitors for IPF treatment. Using this approach, we identified 19 candidate compounds, among which 14 demonstrated TNIK enzymatic inhibition rates exceeding 70% at a concentration of 10 μM, as determined by the ADP-Glo assay. Notably, among these candidates, the approved drug osimertinib showed potent TNIK inhibitory activity with an IC50 of 151.90 nM and demonstrated an acceptable cytotoxicity profile in human lung fibroblast MRC-5 cells (CC50 = 4366.01 nM). Furthermore, osimertinib significantly suppressed TGF-β1-induced fibrogenesis in human lung fibroblast-derived MRC-5 cells at 3 μM, as confirmed by qPCR and Western blot analyses. Molecular dynamics simulations and structural analyses revealed that osimertinib engages the ATP-binding pocket of TNIK via hinge hydrogen bonding with Cys108, while unoccupied subpockets near Met105 and the involvement of Gln157 provide opportunities for rational modifications to improve affinity and selectivity. These findings demonstrate the robustness of our integrated machine learning and structure-based virtual screening pipeline and suggest that osimertinib warrants further evaluation as a TNIK-targeted agent for IPF, with future studies needed to optimize its potency and selectivity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
阿斯兰发布了新的文献求助10
2秒前
17808352679完成签到,获得积分10
2秒前
柳劲南完成签到,获得积分10
2秒前
852应助晶晶采纳,获得10
3秒前
kls完成签到,获得积分10
6秒前
shun发布了新的文献求助10
6秒前
7秒前
9秒前
大模型应助michael采纳,获得10
9秒前
英姑应助Leslie采纳,获得10
10秒前
洋洋羊发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
14秒前
冯佳祥完成签到,获得积分10
15秒前
16秒前
WZ关闭了WZ文献求助
18秒前
负责天问发布了新的文献求助10
21秒前
21秒前
22秒前
共享精神应助taotao采纳,获得10
23秒前
23秒前
26秒前
Owen应助只想快点毕业采纳,获得10
27秒前
28秒前
打打应助研友_LN3NWn采纳,获得10
28秒前
29秒前
李健的粉丝团团长应助shun采纳,获得10
29秒前
小王发布了新的文献求助10
30秒前
Zhusy发布了新的文献求助10
31秒前
zzh319完成签到,获得积分10
31秒前
li完成签到 ,获得积分10
31秒前
江祁发布了新的文献求助10
31秒前
33秒前
33秒前
晶晶发布了新的文献求助10
34秒前
风趣琦发布了新的文献求助10
34秒前
34秒前
shun完成签到,获得积分10
35秒前
量子星尘发布了新的文献求助10
36秒前
King完成签到,获得积分10
38秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 851
The International Law of the Sea (fourth edition) 800
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5416954
求助须知:如何正确求助?哪些是违规求助? 4533002
关于积分的说明 14137871
捐赠科研通 4449072
什么是DOI,文献DOI怎么找? 2440575
邀请新用户注册赠送积分活动 1432430
关于科研通互助平台的介绍 1409858