An open deep learning-based framework and model for tooth instance segmentation in dental CBCT

作者
You Zhou,Yan Xu,Basel Khalil,Andrew Nalley,Mihai Tarce
出处
期刊:Clinical Oral Investigations [Springer Nature]
卷期号:29 (10): 473-473
标识
DOI:10.1007/s00784-025-06578-w
摘要

Abstract Objectives Current dental CBCT segmentation tools often lack accuracy, accessibility, or comprehensive anatomical coverage. To address this, we constructed a densely annotated dental CBCT dataset and developed a deep learning model, OraSeg, for tooth-level instance segmentation, which is then deployed as a one-click tool and made freely accessible for non-commercial use. Materials and methods We established a standardized annotated dataset covering 35 key oral anatomical structures and employed UNetR as the backbone network, combining Swin Transformer and the spatial Mamba module for multi-scale residual feature fusion. The OralSeg model was designed and optimized for precise instance segmentation of dental CBCT images, and integrated into the 3D Slicer platform, providing a graphical user interface for one-click segmentation. Results OralSeg had a Dice similarity coefficient of 0.8316 ± 0.0305 on CBCT instance segmentation compared to SwinUNETR and 3D U-Net. The model significantly improves segmentation performance, especially in complex oral anatomical structures, such as apical areas, alveolar bone margins, and mandibular nerve canals. Conclusion The OralSeg model presented in this study provides an effective solution for instance segmentation of dental CBCT images. The tool allows clinical dentists and researchers with no AI background to perform one-click segmentation, and may be applicable in various clinical and research contexts. Clinical relevance OralSeg can offer researchers and clinicians a user-friendly tool for tooth-level instance segmentation, which may assist in clinical diagnosis, educational training, and research, and contribute to the broader adoption of digital dentistry in precision medicine.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
刚刚
Lune15079完成签到,获得积分10
刚刚
刚刚
1秒前
1秒前
科研通AI6应助XIXI采纳,获得10
1秒前
1秒前
nianlu发布了新的文献求助10
2秒前
小于子88完成签到,获得积分10
2秒前
辛勤的枫叶完成签到,获得积分10
2秒前
CodeCraft应助lilili采纳,获得30
2秒前
林林发布了新的文献求助10
2秒前
Owen应助刘xiang采纳,获得10
3秒前
小小完成签到,获得积分10
3秒前
4秒前
kimchiyak应助lily采纳,获得10
4秒前
4秒前
健壮洋葱发布了新的文献求助10
4秒前
杨一完成签到,获得积分10
4秒前
张包子发布了新的文献求助10
4秒前
4秒前
lamer发布了新的文献求助10
5秒前
5秒前
樱桃完成签到 ,获得积分10
5秒前
yn发布了新的文献求助10
6秒前
Corey_huang发布了新的文献求助10
6秒前
科研通AI6应助拼搏的芷文采纳,获得10
7秒前
7秒前
田様应助细胞不凋王女士采纳,获得10
7秒前
无花果应助123采纳,获得10
7秒前
7秒前
要减肥的镜子完成签到,获得积分20
7秒前
小二郎应助东哥采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
aq发布了新的文献求助10
7秒前
琳666发布了新的文献求助10
7秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668193
求助须知:如何正确求助?哪些是违规求助? 4890085
关于积分的说明 15123716
捐赠科研通 4827144
什么是DOI,文献DOI怎么找? 2584504
邀请新用户注册赠送积分活动 1538380
关于科研通互助平台的介绍 1496656