Transfer learning with graph neural networks for pressure estimation in monitoring-limited water distribution networks

人工神经网络 学习迁移 估计 图形 计算机科学 人工智能 环境科学 机器学习 工程类 理论计算机科学 系统工程
作者
Jian Wang,Guangtao Fu,Dragan Savić
出处
期刊:Water Research [Elsevier]
卷期号:287 (Pt B): 124475-124475 被引量:1
标识
DOI:10.1016/j.watres.2025.124475
摘要

Water distribution networks (WDNs) constitute essential urban infrastructure, yet their monitoring is hindered by limited monitoring conditions. Soft sensing methods have been applied to estimate pressure at unmonitored nodes using the latest deep learning models, however, they rely on large datasets from the same WDNs for training. There is a critical gap in pressure estimation of WDNs under realistic monitoring limitations. This study proposes a Graph Neural Network-based Semi-supervised Transfer Learning (GASTL) approach that estimates node pressures by transferring knowledge between source and target WDNs. GASTL integrates a Heterogeneous Graph Neural Network (HGNN) to extract informative node representations, employs learnable shift parameters for domain adaptation to align source and target distributions, and incorporates Graph Laplacian regularization to enhance spatial consistency and estimation accuracy. The approach is tested on multiple benchmark WDNs, including C-Town, L-Town, and Ky13, under varying sensor numbers and network topology scenarios, and compared against various baseline transfer learning methods. Experimental results demonstrate that GASTL achieves an R² of 0.911 and a Mean Absolute Percentage Error (MAPE) of 9.15 % in Same-topology (e.g., C-Town to C-Town) transfers. In Cross-topology (e.g., L-Town to C-Town) transfers, it attains the same R² of 0.911 and a MAPE of 9.43 %. Further, the study identifies sensor numbers and placement as key factors influencing transfer performance. Notably, the number and location of sensors in the target WDN significantly affect estimation accuracy, whereas topological variations have minimal impact, as they primarily result in shifts in data distribution rather than structural constraints. These findings highlight the potential of transfer learning to improve WDN pressure estimation, offering a scalable and efficient solution for real-world applications.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zxc完成签到 ,获得积分10
刚刚
liuker完成签到 ,获得积分10
刚刚
鑫鑫完成签到,获得积分10
1秒前
自觉静竹发布了新的文献求助10
1秒前
Ava应助虚幻的彤采纳,获得10
1秒前
2秒前
2秒前
天天快乐应助子车万仇采纳,获得10
2秒前
3秒前
lmx发布了新的文献求助10
3秒前
wang发布了新的文献求助10
3秒前
ZZY完成签到,获得积分10
4秒前
5秒前
尤之尤之完成签到,获得积分10
5秒前
含蓄可冥完成签到,获得积分10
5秒前
裴裴完成签到 ,获得积分10
5秒前
研友_LOqqmZ完成签到 ,获得积分10
5秒前
lascqy完成签到 ,获得积分10
6秒前
weimin完成签到,获得积分10
6秒前
自觉静竹完成签到,获得积分10
7秒前
科研菜鸡发布了新的文献求助10
7秒前
majf完成签到,获得积分10
7秒前
搜集达人应助含蓄可冥采纳,获得10
8秒前
9秒前
9秒前
行星一只兔完成签到 ,获得积分10
9秒前
9秒前
柏月发布了新的文献求助10
10秒前
10秒前
冉冉完成签到,获得积分10
11秒前
游标卡尺完成签到,获得积分10
11秒前
11秒前
xiao完成签到 ,获得积分10
12秒前
orixero应助科研通管家采纳,获得10
13秒前
小蘑菇应助科研通管家采纳,获得10
13秒前
Owen应助科研通管家采纳,获得10
13秒前
笔记本应助科研通管家采纳,获得150
13秒前
Henagan完成签到 ,获得积分10
13秒前
ding应助科研通管家采纳,获得10
13秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5296986
求助须知:如何正确求助?哪些是违规求助? 4445980
关于积分的说明 13837948
捐赠科研通 4331070
什么是DOI,文献DOI怎么找? 2377432
邀请新用户注册赠送积分活动 1372677
关于科研通互助平台的介绍 1338246