Toward Efficient UAV-Based Small Object Detection: A Lightweight Network with Enhanced Feature Fusion

计算机科学 特征(语言学) 融合 遥感 人工智能 地质学 哲学 语言学
作者
Xinxin Di,Kangning Cui,Rui-Feng Wang
出处
期刊:Remote Sensing [MDPI AG]
卷期号:17 (13): 2235-2235 被引量:14
标识
DOI:10.3390/rs17132235
摘要

UAV-based small target detection is crucial in environmental monitoring, circuit detection, and related applications. However, UAV images often face challenges such as significant scale variation, dense small targets, high inter-class similarity, and intra-class diversity, which can lead to missed detections, thus reducing performance. To solve these problems, this study proposes a lightweight and high-precision model UAV-YOLO based on YOLOv8s. Firstly, a double separation convolution (DSC) module is designed to replace the Bottleneck structure in the C2f module with deep separable convolution and point-by-point convolution fusion, which can reduce the model parameters and calculation complexity while enhancing feature expression. Secondly, a new SPPL module is proposed, which combines spatial pyramid pooling rapid fusion (SPPF) with long-distance dependency modeling (LSKA) to improve the robustness of the model to multi-scale targets through cross-level feature association. Then, DyHead is used to replace the original detector head, and the discrimination ability of small targets in complex background is enhanced by adaptive weight allocation and cross-scale feature optimization fusion. Finally, the WIPIoU loss function is proposed, which integrates the advantages of Wise-IoU, MPDIoU and Inner-IoU, and incorporates the geometric center of bounding box, aspect ratio and overlap degree into a unified measure to improve the localization accuracy of small targets and accelerate the convergence. The experimental results on the VisDrone2019 dataset showed that compared to YOLOv8s, UAV-YOLO achieved an 8.9% improvement in the recall of mAP@0.5 and 6.8%, while the parameters and calculations were reduced by 23.4% and 40.7%, respectively. Additional evaluations of the DIOR, RSOD, and NWPU VHR-10 datasets demonstrate the generalization capability of the model.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
脑洞疼应助大帅采纳,获得10
1秒前
minty关注了科研通微信公众号
2秒前
2秒前
郑开司09发布了新的文献求助10
2秒前
3秒前
3秒前
5秒前
77发布了新的文献求助10
6秒前
jiangmj1990完成签到,获得积分10
6秒前
6秒前
7秒前
11完成签到,获得积分10
7秒前
小陈发布了新的文献求助10
8秒前
今后应助神勇乐安采纳,获得10
8秒前
xh完成签到,获得积分10
9秒前
万能图书馆应助路见不平采纳,获得10
10秒前
10秒前
11秒前
七木发布了新的文献求助10
11秒前
十一发布了新的文献求助30
12秒前
12秒前
77完成签到,获得积分10
13秒前
郑开司09完成签到,获得积分10
14秒前
浮游应助小亮哈哈采纳,获得10
14秒前
大帅发布了新的文献求助10
16秒前
16秒前
weiye1992完成签到,获得积分10
16秒前
Akim应助416采纳,获得10
16秒前
郑龙智完成签到 ,获得积分10
16秒前
边走边听发布了新的文献求助10
16秒前
17秒前
哈哈的哈哈完成签到,获得积分10
17秒前
活泼的平灵完成签到,获得积分10
19秒前
LYF应助ran采纳,获得10
19秒前
19秒前
黑山老妖发布了新的文献求助10
20秒前
雅雅完成签到,获得积分10
20秒前
科研通AI2S应助Skywalker采纳,获得10
20秒前
火星发布了新的文献求助10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Elle ou lui ? Histoire des transsexuels en France 500
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5317605
求助须知:如何正确求助?哪些是违规求助? 4460074
关于积分的说明 13877203
捐赠科研通 4350269
什么是DOI,文献DOI怎么找? 2389293
邀请新用户注册赠送积分活动 1383489
关于科研通互助平台的介绍 1352847