Large Language Model Agent for Managing Patients With Suspected Hypertension

医学 重症监护医学 计算机科学
作者
Yijun Wang,Wuping Tan,Siyi Cheng,Chen Peng,Peng Jin,Fanglin Qin,Long Tang,Tongjian Zhu,Bing Wu,Jinjun Liu,Jun Wang
出处
期刊:Hypertension [Ovid Technologies (Wolters Kluwer)]
标识
DOI:10.1161/hypertensionaha.125.25305
摘要

BACKGROUND: The effectiveness of Large Language Model agent frameworks for hypertension screening and personalized health management has not been fully studied. This study aimed to develop and evaluate a Large Language Model–based Agent, called the Cascade Framework, and assess its effectiveness in hypertension education and clinical decision support. METHODS: The Cascade Framework was developed utilizing the Dify platform, and its performance was tested via a robust 2-phase evaluation protocol from August 2024 to June 2025. The first phase involved systematic performance benchmarking of 6 configurations: 3 foundational Large Language Models (Chat Generative Pretrained Transformer [ChatGPT]-4o, ChatGPT-4oMini, and DeepSeek-V3) and their respective Cascade-enhanced versions. The second phase included an external validation in a cohort of patients with suspected hypertension. RESULTS: Cascade integration yielded significant performance improvements across all models. For ChatGPT-4o, educational outcomes improved (Accuracy: 3.87→4.10, P =0.02; Comprehensiveness: 4.07→4.32, P =0.16; Credibility: 3.79→4.03, P <0.001; Understandability: 3.90→3.96, P =0.005; Emotional Support: 3.87→4.01, P <0.001). Blood pressure classification accuracy rose from 62.5% to 87.0% ( P <0.001) and risk factor stratification from 60.4% to 98.6% ( P <0.001). Clinical decision-making improved, with accuracy of 72.0% to 92.5%. A similar trend of performance improvement was observed in the external validation cohort, where the 4o-Cascade model achieved increases in blood pressure classification accuracy (58.9%→95.3%), risk stratification accuracy (71.0%→90.7%), and clinical decision appropriateness (66.4%→92.5%), all with P <0.001 and surpassing the performance of the 3 physicians. CONCLUSIONS: Cascade Framework can improve the management of hypertension. Its extensible architecture allows integration with existing clinical workflows while providing transparent reasoning pathways.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大胆一刀完成签到,获得积分20
刚刚
吃葡萄皮发布了新的文献求助10
1秒前
AFsumo完成签到,获得积分10
1秒前
可乐完成签到,获得积分10
2秒前
阿泽发布了新的文献求助10
2秒前
zhongniuniu关注了科研通微信公众号
2秒前
2秒前
kkc完成签到,获得积分10
2秒前
完美世界应助烂漫念柏采纳,获得10
2秒前
土豆宝发布了新的文献求助10
2秒前
诗谙发布了新的文献求助10
3秒前
4秒前
4秒前
zbaby完成签到,获得积分10
4秒前
Hello应助南宫冰夏采纳,获得10
4秒前
啦啦啦完成签到,获得积分10
4秒前
斯文败类应助故意的驳采纳,获得10
5秒前
大聪明完成签到,获得积分20
5秒前
爱在西元前完成签到,获得积分10
5秒前
Morch2021发布了新的文献求助10
6秒前
大地上的鱼完成签到,获得积分10
6秒前
火羽白然完成签到 ,获得积分10
6秒前
NexusExplorer应助mywaylgh采纳,获得10
6秒前
panpan完成签到,获得积分10
8秒前
Una完成签到,获得积分10
8秒前
新茶完成签到,获得积分10
8秒前
NJD应助mei采纳,获得10
8秒前
8秒前
111发布了新的文献求助10
9秒前
思源应助爱在西元前采纳,获得10
9秒前
9秒前
pluto应助Qyyy采纳,获得10
10秒前
今后应助qiaocolate采纳,获得10
11秒前
13秒前
romio发布了新的文献求助10
13秒前
樱花慕斯发布了新的文献求助10
14秒前
Akim应助吃葡萄皮采纳,获得10
14秒前
aaa发布了新的文献求助10
14秒前
15秒前
一一完成签到,获得积分10
15秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5349460
求助须知:如何正确求助?哪些是违规求助? 4483329
关于积分的说明 13955109
捐赠科研通 4382361
什么是DOI,文献DOI怎么找? 2407835
邀请新用户注册赠送积分活动 1400459
关于科研通互助平台的介绍 1373731