电合成
催化作用
多金属氧酸盐
化学
纳米团簇
质子耦合电子转移
电解质
电子转移
质子化
电化学
离解(化学)
法拉第效率
化学工程
无机化学
光化学
物理化学
电极
离子
有机化学
工程类
作者
Jun Wang,Junheng Huang,Chunguang Jia,Wenxing Chen,Junxiang Chen,S. Lin,Yangjie Liu,Kai Chen,Yiqi Liang,Ci Su,Zhenhai Wen
出处
期刊:Angewandte Chemie
[Wiley]
日期:2025-06-26
卷期号:64 (35): e202510645-e202510645
被引量:1
标识
DOI:10.1002/anie.202510645
摘要
Abstract Polymer‐based solid electrolyte (SE) cells promise electrochemical synthesis of pure hydrogen peroxide (H 2 O 2 ), yet the protonation mechanisms governing the two‐electron oxygen reduction reaction (2e − ‐ORR) remain unclear when using pure water as the proton source. Both Langmuir–Hinshelwood (LH, surface *H‐mediated) and Eley–Rideal (ER, water‐derived proton‐coupled) pathways are theoretically plausible, but their practical dominance under SE conditions lacks experimental validation. Herein, we designed a hierarchical Ni─N 2 ─C─O single‐atom/NiO nanocluster co‐decorated porous carbon nanosheet catalyst (NiSA‐NiO/pCNs) that achieved a Faradaic efficiency of 97% and a H 2 O 2 partial current density of 356 mA cm⁻ 2 (equivalent to 6.6 mmol cm −2 h −1 production rate) in a porous SE cell. Analysis of reaction intermediates and the local pH using in situ Raman spectroscopy, kinetic isotope effect, and density functional theory simulations showed the critical role of NiO nanoclusters in tuning the protonation pathway: NiO activates the ER mechanism via fast proton transfer from water dissociation, whereas NiSA/pCNs without NiO preferentially follow the LH mechanism through surface‐adsorbed *H intermediates from interfacial transferred proton. These findings establish a catalyst design principle for proton transfer control in solid‐state H 2 O 2 electrosynthesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI