AI‐enabled precise brain tumor segmentation by integrating Refinenet and contour‐constrained features in MRI images

分割 计算机科学 人工智能 图像分割 医学影像学 尺度空间分割 基于分割的对象分类 稳健性(进化) 计算机视觉 模式识别(心理学) 深度学习 生物化学 化学 基因
作者
Cheng Lv,Xujun Shu,Jun Qiu,Zicheng Xiong,Jing Ye,Shang Li,Shengbo Chen,Hong Rao
出处
期刊:Medical Physics [Wiley]
卷期号:52 (7): e17958-e17958
标识
DOI:10.1002/mp.17958
摘要

Abstract Background Medical image segmentation is a fundamental task in medical image analysis and has been widely applied in multiple medical fields. The latest transformer‐based deep learning segmentation model, Segment Anything Model (SAM), has demonstrated outstanding performance in natural image segmentation tasks through large‐scale pre‐training, achieving zero‐shot image semantic understanding and pixel‐level segmentation. However, medical images present challenges such as style variability, ill‐defined object boundaries, and feature ambiguities, limiting the direct applicability of the SAM to medical image segmentation tasks. Purpose To enhance the robustness of the SAM in the domain of medical segmentation, we propose the SAM‐RCCF framework. This approach aims to enhance the generalizability and precision of segmentation performance across diverse intracranial tumor types, including gliomas, metastatic tumors, and meningiomas. Materials and methods The study collected 484 axial T1‐weighted contrast‐enhanced (T1CE) magnetic resonance imaging (MRI) data of brain tumor patients, including 164 cases of glioma, 158 cases of metastatic tumors, and 162 cases of meningioma. All imaging data were randomly divided into training and testing sets. We employed the proposed SAM‐RCCF model to perform segmentation experiments on these data, and five‐fold cross‐validation was adopted to evaluate the model's performance. This framework integrates the RefineNet module and the conditional control field with a conditional controller and Mask generator, enabling precise feature recognition and tailored segmentation for medical images, optimizing segmentation accuracy Results In the glioma segmentation experiment, the SAM‐RCCF model achieved outstanding performance with an IOU of 0.90, DSC of 0.912, and HD of 13.13. For the meningioma segmentation task, it obtained an IOU of 0.9214, DSC of 0.93, and HD of 11.41, significantly outperforming other classic segmentation models. Conclusion The segmentation experiment results demonstrate that in the segmentation tasks of glioma, metastatic tumors, and meningioma MRI images, the SAM‐RCCF algorithm significantly outperformed the original SAM in terms of DSC, HD, and IOU segmentation performance metrics. The experimental results verify the effectiveness of the SAM‐RCCF framework in segmenting complex and variable brain tumor images, enhancing segmentation accuracy and robustness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lixiang完成签到,获得积分10
刚刚
jessica发布了新的文献求助30
2秒前
2秒前
失眠的科研g关注了科研通微信公众号
2秒前
4秒前
红枫没有微雨怜完成签到 ,获得积分10
4秒前
果果完成签到,获得积分10
5秒前
静文发布了新的文献求助10
5秒前
5秒前
赵正洁完成签到 ,获得积分10
6秒前
Jasper应助优乐美采纳,获得10
6秒前
开放幻丝发布了新的文献求助10
6秒前
安雯完成签到 ,获得积分10
6秒前
6秒前
cici完成签到 ,获得积分10
7秒前
黎怡萱发布了新的文献求助10
8秒前
艾斯完成签到,获得积分10
8秒前
丘比特应助6666采纳,获得10
9秒前
9秒前
10秒前
11秒前
嘟嘟嘟完成签到,获得积分10
11秒前
许多多完成签到,获得积分10
12秒前
Wen发布了新的文献求助10
13秒前
郭泓嵩完成签到,获得积分10
13秒前
静文完成签到,获得积分10
14秒前
烧饼拌糖完成签到,获得积分10
14秒前
15秒前
杨涵发布了新的文献求助10
16秒前
张老板完成签到 ,获得积分10
16秒前
Mh发布了新的文献求助20
17秒前
tteng发布了新的文献求助10
17秒前
ChiahaoKuo完成签到 ,获得积分10
17秒前
桢桢树完成签到 ,获得积分10
18秒前
opus17完成签到,获得积分10
19秒前
19秒前
在水一方应助静文采纳,获得10
20秒前
Wen完成签到,获得积分10
20秒前
清爽慕山完成签到,获得积分10
21秒前
linghaom发布了新的文献求助10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5306536
求助须知:如何正确求助?哪些是违规求助? 4452296
关于积分的说明 13854370
捐赠科研通 4339755
什么是DOI,文献DOI怎么找? 2382830
邀请新用户注册赠送积分活动 1377724
关于科研通互助平台的介绍 1345400