A hybrid deep learning framework for total organic carbon prediction from geophysical well logs using multi-scale feature extraction and reversible normalization

规范化(社会学) 物理 比例(比率) 特征提取 人工智能 模式识别(心理学) 地球物理学 计算机科学 人类学 量子力学 社会学
作者
Shanchen Pang,Hongjin Qiu,Youzhuang Sun,Qinghao Pang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (9)
标识
DOI:10.1063/5.0284231
摘要

The precise estimation of total organic carbon (TOC) through well logging measurements is a critical objective in petroleum exploration and production. It serves as a fundamental metric for evaluating the hydrocarbon potential of source rocks, assessing reservoir characteristics, and guiding exploration decisions. However, predicting TOC presents challenges due to the complexity of fluid dynamics in geological structures and the diverse nature of subsurface environments. This study proposes a novel hybrid model architecture leveraging advanced computational techniques to address these challenges. The model combines multi-scale feature extraction and global modeling capabilities to enhance prediction accuracy and robustness. It captures local fluid–structure interactions and geological heterogeneities through multi-scale feature extraction, while integrating multi-head self-attention mechanisms and reversible instance normalization to model global dependencies and spatiotemporal fluid dynamics. A residual enhancement mechanism improves training efficiency and generalization performance. Experimental results show the proposed model significantly outperforms traditional methods and mainstream deep learning models in metrics such as root mean square error, mean square error, mean absolute error, and coefficient of determination, showcasing superior adaptability and accuracy in complex fluid systems. This research provides an efficient and accurate solution for TOC prediction in unconventional oil and gas exploration and contributes to the broader application of computational fluid dynamics and machine learning in geophysical and multiphase flow studies. Future work will optimize the model architecture and integrate domain-specific knowledge to enhance interpretability and applicability in fluid dynamics and subsurface flow analysis.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
天天快乐应助不要芫荽采纳,获得10
刚刚
赘婿应助雪饼采纳,获得10
2秒前
2秒前
Qinjichao发布了新的文献求助10
2秒前
3秒前
3秒前
3秒前
黄新绒发布了新的文献求助10
3秒前
4秒前
4秒前
吴彦祖完成签到,获得积分10
4秒前
4秒前
传奇3应助cc采纳,获得10
5秒前
5秒前
理想发布了新的文献求助10
5秒前
6秒前
天天快乐应助耍酷含芙采纳,获得10
6秒前
杨立豪发布了新的文献求助10
6秒前
FashionBoy应助杨66采纳,获得30
7秒前
7秒前
77发布了新的文献求助10
7秒前
WuYiHHH发布了新的文献求助10
7秒前
爆米花应助小九在找文采纳,获得10
7秒前
8秒前
8秒前
8秒前
8秒前
琳科研_文献完成签到,获得积分20
9秒前
陈同学发布了新的文献求助10
9秒前
9秒前
天天快乐应助pbj采纳,获得10
9秒前
所所应助儒雅寻菱采纳,获得10
9秒前
黄新绒完成签到,获得积分10
9秒前
lull发布了新的文献求助10
10秒前
10秒前
10秒前
我是老大应助xcg采纳,获得50
11秒前
Orange应助会撒娇的芷烟采纳,获得10
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4478865
求助须知:如何正确求助?哪些是违规求助? 3936366
关于积分的说明 12212111
捐赠科研通 3590997
什么是DOI,文献DOI怎么找? 1974666
邀请新用户注册赠送积分活动 1011943
科研通“疑难数据库(出版商)”最低求助积分说明 905377