Nonlinear RNN with noise-immune: A robust and learning-free method for hyperspectral image target detection

计算机科学 稳健性(进化) 循环神经网络 高光谱成像 非线性系统 算法 人工智能 残余物 数学优化 人工神经网络 数学 生物化学 量子力学 基因 物理 化学
作者
Xiuchun Xiao,Chengze Jiang,Long Jin,Haoen Huang,Guancheng Wang
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:229: 120490-120490 被引量:17
标识
DOI:10.1016/j.eswa.2023.120490
摘要

While the recurrent neural network (RNN) has achieved remarkable performance on dynamic and control tasks, its applications to image processing, particularly target detection are limited. Challenges arise from differences between the two domains, such as the way for merging time information into static problems and variances of dynamic and static solving methods. To this end, we first extend the existing constrained energy minimization (CEM)-based detection scheme to a dynamic version, e.g. dynamic reinforced CEM (DRCEM), which injects the dynamic information. After that, aided by the rigorous mathematical derivation and optimization theory, the DRCEM is merged into the RNN solution framework. To enhance the robustness and convergence of the existing RNN solutions for improving DRCEM performance, the nonlinear and bounded-constraint RNN (NBCRNN) is designed by developing a novel nonlinear activation function, then applying the proposed model to implement the DRCEM scheme. The corresponding theorem results reveal the proposed model possesses global convergence and enhanced robustness. Compared to state-of-the-art works, the DRCEM solved by the NBCRNN model detection method achieves better detection accuracy, with 1.82% improvement in terms of the Kappa coefficient, and reduces the residual error from 10−4 to 10−7. Furthermore, our detection method is able to preserve the detection accuracy in presence of noise perturbated. To the best of our knowledge, it is the first work to develop the zeroing-type RNN for hyperspectral image target detection. The code and models are publicly available at Github DRCEM_NBCRNN Code Implementation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jeffrey完成签到,获得积分10
刚刚
一直成长完成签到,获得积分10
刚刚
Orochimaru完成签到,获得积分10
1秒前
huangJP完成签到,获得积分10
2秒前
bing完成签到,获得积分10
4秒前
zhuchenglu完成签到,获得积分10
4秒前
Zz完成签到 ,获得积分10
5秒前
wangye完成签到 ,获得积分10
6秒前
蔡从安完成签到,获得积分20
7秒前
她的城完成签到,获得积分0
9秒前
白若宇完成签到,获得积分20
11秒前
今后应助faye采纳,获得10
11秒前
12秒前
燕子完成签到,获得积分20
13秒前
韦雪莲完成签到 ,获得积分10
18秒前
xiaofan完成签到,获得积分10
18秒前
朔月发布了新的文献求助10
19秒前
年轻半雪完成签到,获得积分10
19秒前
19秒前
哈哈哈哈嘻嘻嘻完成签到 ,获得积分10
23秒前
13633501455完成签到 ,获得积分10
26秒前
dmr完成签到,获得积分10
27秒前
Lee完成签到,获得积分10
29秒前
Raki完成签到,获得积分10
29秒前
Heidi完成签到 ,获得积分10
30秒前
kwakyong完成签到 ,获得积分10
30秒前
Dotson完成签到,获得积分10
31秒前
dajiejie完成签到 ,获得积分10
32秒前
yu完成签到,获得积分10
33秒前
34秒前
友好念真完成签到,获得积分10
35秒前
陈琳完成签到,获得积分10
35秒前
zjzjzjzjzj完成签到 ,获得积分10
37秒前
等等完成签到,获得积分10
38秒前
38秒前
wxx完成签到,获得积分10
40秒前
41秒前
Novice6354完成签到 ,获得积分10
43秒前
46秒前
嘻嘻完成签到 ,获得积分10
46秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804267
求助须知:如何正确求助?哪些是违规求助? 3349074
关于积分的说明 10341363
捐赠科研通 3065204
什么是DOI,文献DOI怎么找? 1682984
邀请新用户注册赠送积分活动 808587
科研通“疑难数据库(出版商)”最低求助积分说明 764600