Nanointerface Engineering of Metal Hydrides for Advanced Hydrogen Storage

氢气储存 氢化物 材料科学 氢经济 氢燃料 纳米技术 化学工程 金属 化学 冶金 有机化学 工程类
作者
YongJun Cho,Hyun Cho,Eun Seon Cho
出处
期刊:Chemistry of Materials [American Chemical Society]
卷期号:35 (2): 366-385 被引量:35
标识
DOI:10.1021/acs.chemmater.2c02628
摘要

With global efforts to relieve the formidable impact of climate change, hydrogen is considered a viable replacement for fossil fuels without intermittency concerns of other renewable sources. Hydrogen storage plays a pivotal role in the implementation of hydrogen economy, coupling hydrogen production with fuel cell technologies. Storing hydrogen in the form of solid-state hydride materials has been studied as a future hydrogen storage technology for enabling a safe, energy-efficient, and high-energy-density system. However, hostile thermodynamic and kinetic properties of each hydride material result in insufficient hydrogen storage performance for practical applications, such as sluggish hydrogen absorption or desorption, high dehydrogenation temperatures, and sometimes limited reversibility; thus, these kinetic and thermodynamic characteristics need to be thoroughly understood depending on each hydride material. Among various strategies, nanostructuring has been regarded as a general approach to tackling such limitations regarding thermodynamic and kinetic characteristics of hydride materials. In particular, the formation of nanosized hydrides within a nanostructured scaffold─also known as nanoconfinement─is of great potential for advanced hydrogen storage because it can additionally leverage host–guest interactions at the nanointerfaces of hydride materials and scaffolds. In this context, the active tuning of such nanointerfaces brings about additional thermodynamic or kinetic changes in hydrogen sorption reactions compared to the unmodified nanoconfined hydride composites, holding great promise for tailored strategies for each metal hydride. In this Perspective, we summarize the major thermodynamic and kinetic barriers of each metal hydride and highlight the recent progress in overcoming such limits, mainly focusing on nanointerface engineering in nanoconfined metal hydrides. Further, we provide our insight and current challenges in understanding the underlying mechanisms of the interaction at the nanointerface, whereby the noticeable technological leaps can be emulated in practical systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
今后应助biu我你开心吗采纳,获得10
刚刚
简单与初夏关注了科研通微信公众号
刚刚
chanyi完成签到,获得积分10
3秒前
热爱完成签到,获得积分10
4秒前
Larvenpiz完成签到,获得积分10
5秒前
nicoleJ完成签到,获得积分20
7秒前
7秒前
鱿鱼炒黄瓜完成签到,获得积分10
8秒前
llllx发布了新的文献求助10
10秒前
情怀应助二三采纳,获得20
11秒前
liuzm发布了新的文献求助10
12秒前
充电宝应助小天采纳,获得10
12秒前
13秒前
赘婿应助wyz653采纳,获得10
14秒前
15秒前
15秒前
16秒前
正直涵菱完成签到,获得积分10
16秒前
汉朝老橙完成签到,获得积分10
16秒前
柏不斜完成签到,获得积分10
16秒前
迅速小懒猪完成签到,获得积分10
17秒前
17秒前
TRISTE发布了新的文献求助10
19秒前
科研通AI5应助汉朝老橙采纳,获得10
20秒前
柏不斜发布了新的文献求助10
20秒前
Owen应助行道吉安采纳,获得10
20秒前
谢小盟应助llllx采纳,获得10
22秒前
22秒前
龙成阳完成签到 ,获得积分10
24秒前
居亦活简完成签到 ,获得积分10
25秒前
25秒前
25秒前
高高羊发布了新的文献求助10
27秒前
29秒前
CompJIN发布了新的文献求助10
30秒前
天天快乐应助timber采纳,获得10
31秒前
31秒前
31秒前
共享精神应助liuzm采纳,获得10
31秒前
31秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Semantics for Latin: An Introduction 1099
Robot-supported joining of reinforcement textiles with one-sided sewing heads 780
A Student's Guide to Developmental Psychology 600
Stem Cells: Scientific Facts and Fiction 3rd Edition 500
水稻光合CO2浓缩机制的创建及其作用研究 500
Logical form: From GB to Minimalism 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4158022
求助须知:如何正确求助?哪些是违规求助? 3693745
关于积分的说明 11664531
捐赠科研通 3385037
什么是DOI,文献DOI怎么找? 1856871
邀请新用户注册赠送积分活动 918086
科研通“疑难数据库(出版商)”最低求助积分说明 831344