亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Prediction model of poorly differentiated colorectal cancer (CRC) based on gut bacteria

生物 结直肠癌 寄生虫学 肠道细菌 细菌 癌症 计算生物学 内科学 生物信息学 动物 遗传学 医学
作者
Qi Zhang,Zuo Zhibo,Zhuang Jing,Qu Zhanbo,Han Shugao,Jin Weili,Jiang Liu,Han Shuwen
出处
期刊:BMC Microbiology [BioMed Central]
卷期号:22 (1) 被引量:26
标识
DOI:10.1186/s12866-022-02712-w
摘要

Abstract Background The mortality of colorectal cancer is high, the malignant degree of poorly differentiated colorectal cancer is high, and the prognosis is poor. Objective To screen the characteristic intestinal microbiota of poorly differentiated intestinal cancer. Methods Fecal samples were collected from 124 patients with moderately differentiated CRC and 123 patients with poorly differentiated CRC, and the bacterial 16S rRNA V1-V4 region of the fecal samples was sequenced. Alpha diversity analysis was performed on fecal samples to assess the diversity and abundance of flora. The RDP classifier Bayesian algorithm was used to analyze the community structure. Linear discriminant analysis and Student's t test were used to screen the differences in flora. The PICRUSt1 method was used to predict the bacterial function, and six machine learning models, including logistic regression, random forest, neural network, support vector machine, CatBoost and gradient boosting decision tree, were used to construct a prediction model for the poor differentiation of colorectal cancer. Results There was no significant difference in fecal flora alpha diversity between moderately and poorly differentiated colorectal cancer (P > 0.05). The bacteria that accounted for a large proportion of patients with poorly differentiated and moderately differentiated colorectal cancer were Blautia , Escherichia-Shigella , Streptococcus , Lactobacillus , and Bacteroides . At the genus level, there were nine bacteria with high abundance in the poorly differentiated group, including Bifidobacterium , norank_f__Oscillospiraceae , Eisenbergiella, etc. There were six bacteria with high abundance in the moderately differentiated group, including Megamonas , Erysipelotrichaceae_UCG-003 , Actinomyces , etc. The RF model had the highest prediction accuracy (100.00% correct). The bacteria that had the greatest variable importance in the model were Pseudoramibacter, Megamonas and Bifidobacterium. Conclusion The degree of pathological differentiation of colorectal cancer was related to gut flora, and poorly differentiated colorectal cancer had some different bacterial flora, and intestinal bacteria can be used as biomarkers for predicting poorly differentiated CRC.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
14秒前
21秒前
22秒前
zzx发布了新的文献求助10
27秒前
科研狂人发布了新的文献求助10
28秒前
科研狂人完成签到,获得积分10
44秒前
传奇3应助科研通管家采纳,获得10
44秒前
烟花应助科研通管家采纳,获得10
44秒前
高大的小土豆完成签到,获得积分20
1分钟前
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
SciGPT应助城。采纳,获得10
3分钟前
3分钟前
城。发布了新的文献求助10
3分钟前
机灵雨完成签到 ,获得积分10
3分钟前
ZaZa完成签到,获得积分10
4分钟前
城。完成签到,获得积分20
4分钟前
610完成签到 ,获得积分10
6分钟前
6分钟前
7分钟前
酒酒发布了新的文献求助10
7分钟前
剑八完成签到,获得积分10
8分钟前
酒酒完成签到,获得积分10
8分钟前
顺心寄文完成签到 ,获得积分10
8分钟前
欢呼的初彤完成签到 ,获得积分10
8分钟前
8分钟前
Ava应助飘逸蚂蚁采纳,获得10
9分钟前
傲娇的笑白完成签到 ,获得积分10
10分钟前
上官若男应助大力的千筹采纳,获得10
10分钟前
斯文败类应助科研通管家采纳,获得10
10分钟前
小马甲应助科研通管家采纳,获得10
10分钟前
10分钟前
11分钟前
11分钟前
mashibeo完成签到,获得积分10
11分钟前
木木完成签到 ,获得积分10
11分钟前
11分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
Mixing the elements of mass customisation 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3779163
求助须知:如何正确求助?哪些是违规求助? 3324762
关于积分的说明 10219859
捐赠科研通 3039890
什么是DOI,文献DOI怎么找? 1668476
邀请新用户注册赠送积分活动 798658
科研通“疑难数据库(出版商)”最低求助积分说明 758503