Hybrid deep learning and GARCH-family models for forecasting volatility of cryptocurrencies

波动性(金融) ARCH模型 数字加密货币 深度学习 人工神经网络 计量经济学 计算机科学 人工智能 机器学习 经济 计算机安全
作者
Bahareh Amirshahi,Salim Lahmiri
出处
期刊:Machine learning with applications [Elsevier BV]
卷期号:12: 100465-100465 被引量:30
标识
DOI:10.1016/j.mlwa.2023.100465
摘要

The combination of Deep Learning and GARCH-type models has been proved to be superior to the single models in forecasting of volatility in various markets such as energy, main metals, and especially stock markets. To verify this hypothesis for cryptocurrencies market, we constructed various Deep Learning models based on Feed Forward Neural Networks (DFFNNs) and Long Short-Term Memory (LSTM) networks and evaluated their performance in forecasting the volatility of 27 cryptocurrencies. Then, different hybrid models were built in which the outputs of three GARCH-type models, namely GARCH, EGARCH, and APGARCH, with three different assumptions for the residuals' distribution were fed into the DFFNN and LSTM networks. In other words, GARCH-type models were utilized as feature extractors and the deep learning models leveraged a sequence of extracted features as their inputs to produce the volatility of the next day. Our findings revealed that not only the deep learning models improve the forecasts of GARCH-type models with any distribution assumption, the forecasts of GARCH-type models as informative features can significantly increase the predictive power of the studied deep learning models; namely, the DFFNN and LSTM models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
精明代灵完成签到,获得积分20
1秒前
1秒前
华仔应助张朵朵采纳,获得10
1秒前
1秒前
1秒前
1秒前
jindui发布了新的文献求助10
2秒前
JUSTs0so发布了新的文献求助10
2秒前
小帅完成签到,获得积分10
2秒前
impose发布了新的文献求助10
2秒前
3秒前
4秒前
小马甲应助自然浩阑采纳,获得10
4秒前
taniou发布了新的文献求助10
4秒前
4秒前
4秒前
懵懂的采梦完成签到,获得积分10
4秒前
guo发布了新的文献求助10
6秒前
shanp发布了新的文献求助10
7秒前
丘比特应助晨曦采纳,获得10
8秒前
8秒前
嘻嘻哈哈完成签到,获得积分10
8秒前
小乐完成签到 ,获得积分10
9秒前
123发布了新的文献求助10
9秒前
关江宇完成签到,获得积分10
10秒前
脑洞疼应助qiqi采纳,获得10
10秒前
李健应助精明代灵采纳,获得10
10秒前
10秒前
难过的翠霜完成签到 ,获得积分10
11秒前
hehehe完成签到,获得积分10
11秒前
jindui完成签到,获得积分10
11秒前
星辰大海应助guo采纳,获得10
12秒前
12秒前
Akim应助1234采纳,获得10
13秒前
郭志倩完成签到,获得积分10
13秒前
13秒前
张朵朵发布了新的文献求助10
13秒前
13秒前
14秒前
Tree_QD发布了新的文献求助10
15秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Functional High Entropy Alloys and Compounds 1000
Building Quantum Computers 1000
Molecular Cloning: A Laboratory Manual (Fourth Edition) 500
Social Epistemology: The Niches for Knowledge and Ignorance 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4233414
求助须知:如何正确求助?哪些是违规求助? 3766876
关于积分的说明 11835344
捐赠科研通 3425198
什么是DOI,文献DOI怎么找? 1879742
邀请新用户注册赠送积分活动 932497
科研通“疑难数据库(出版商)”最低求助积分说明 839688