Entangled Mesh Hydrogels with Macroporous Topologies via Cryogelation for Rapid Atmospheric Water Harvesting

自愈水凝胶 材料科学 吸附 解吸 化学工程 动力学 多孔性 纳米技术 水分 工艺工程 拓扑(电路) 计算机科学 复合材料 吸附 高分子化学 有机化学 化学 电气工程 工程类 物理 量子力学
作者
Jiajun Sun,Fang Ni,Jincui Gu,Muqing Si,Depeng Liu,Chang Zhang,Xiaoxue Shui,Peng Xiao,Tao Chen
出处
期刊:Advanced Materials [Wiley]
标识
DOI:10.1002/adma.202314175
摘要

Abstract Sorption‐based atmospheric water harvesting (SAWH) is a promising technology to alleviate freshwater scarcity. Recently, hygroscopic salt‐hydrogel composites (HSHCs) have emerged as attractive candidates with their high water uptake, versatile designability, and scale‐up fabrication. However, achieving high‐performance SAWH applications for HSHCs has been challenging because of their sluggish kinetics, attributed to their limited mass transport properties. Herein, a universal network engineering of hydrogels using a cryogelation method is presented, significantly improving the SAWH kinetics of HSHCs. As a result of the entangled mesh confinements formed during cryogelation, a stable macroporous topology is attained and maintained within the obtained entangled‐mesh hydrogels (EMHs), leading to significantly enhanced mass transport properties compared to conventional dense hydrogels (CDHs). With it, corresponding hygroscopic EMHs (HEMHs) simultaneously exhibit faster moisture sorption and solar‐driven water desorption. Consequently, a rapid‐cycling HEMHs‐based harvester delivers a practical freshwater production of 2.85 L water kg sorbents −1 day −1 via continuous eight sorption/desorption cycles, outperforming other state‐of‐the‐art hydrogel‐based sorbents. Significantly, the generalizability of this strategy has been validated by extending it to other hydrogels used in HSHCs. Overall, this work offers a new approach to efficiently address long‐standing challenges of sluggish kinetics in current HSHCs, promoting them toward the next‐generation SAWH applications. This article is protected by copyright. All rights reserved
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
诸亦凝完成签到,获得积分10
3秒前
4秒前
8秒前
坚强小蚂蚁完成签到 ,获得积分10
9秒前
蒽蒽发布了新的文献求助30
9秒前
9秒前
黄橙子发布了新的文献求助10
9秒前
plh完成签到,获得积分10
9秒前
10秒前
Flin完成签到 ,获得积分10
14秒前
xiaokezhang发布了新的文献求助10
15秒前
rita发布了新的文献求助10
15秒前
qq发布了新的文献求助20
20秒前
传奇3应助xiaokezhang采纳,获得10
21秒前
Tina完成签到,获得积分10
21秒前
FashionBoy应助YYNY1008采纳,获得10
22秒前
乐乐应助映雪923采纳,获得10
23秒前
完美世界应助Sew东坡采纳,获得10
25秒前
30秒前
YYNY1008发布了新的文献求助10
35秒前
38秒前
H123给jet74的求助进行了留言
39秒前
40秒前
41秒前
科研天才发布了新的文献求助10
45秒前
45秒前
anannnnn完成签到 ,获得积分10
47秒前
bakbak完成签到,获得积分10
48秒前
哟哟哟发布了新的文献求助10
49秒前
51秒前
52秒前
52秒前
53秒前
麦片发布了新的文献求助30
53秒前
思芋奶糕发布了新的文献求助10
54秒前
云里完成签到,获得积分10
55秒前
wuhaixia完成签到,获得积分10
55秒前
在水一方应助Grace_Willis采纳,获得10
55秒前
英俊的铭应助哟哟哟采纳,获得10
55秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2414455
求助须知:如何正确求助?哪些是违规求助? 2107845
关于积分的说明 5328864
捐赠科研通 1835070
什么是DOI,文献DOI怎么找? 914378
版权声明 561017
科研通“疑难数据库(出版商)”最低求助积分说明 488942