Smart Health Monitoring of Concrete Bridges Using Digital Twin and Ai Applications

材料科学 结构健康监测 建筑工程 法律工程学 复合材料 工程类
作者
Asseel Al-Hijazeen,Kálmán Koris
出处
期刊:Advances in Science and Technology 卷期号:164: 83-97
标识
DOI:10.4028/p-ac7nhw
摘要

Safety and sustainability of reinforced concrete bridges may be increased by observing their condition during operation and thus accurately predicting their behaviour under various load conditions. This can be achieved through a monitoring system and automatic error detection based on the measured data. By detecting potential issues early on, significant damages can be prevented before they occur. Despite extensive data collection from many monitored bridges, this data often remains unprocessed and uninformative in its raw form. We aim to transform this data into a format that can help to estimate a bridge’s health condition. This approach is presented through a case study of an existing reinforced concrete box girder bridge in Hungary. Digital twin (DT) technology was used to simulate the bridge’s behaviour and to verify structural conditions under any given traffic load arrangement. Static calculations and verification of load-bearing and serviceability conditions were performed on a validated 3D finite element (FE) model. Different traffic load scenarios were randomly generated using Monte Carlo simulation, and the bridge’s condition was evaluated for each case. The actual condition was quantified by parameters such as the bridge’s utilization for different USL and SLS limit values, especially for deflection and crack width. In the FE model, the physical characteristics that are recorded on the real bridge by the actual measuring instruments were also recorded at the locations corresponding to the monitoring points on the actual structure. The relationship between the virtual bridge’s condition and the virtual monitoring data was determined using artificial intelligence (AI) applications, particularly artificial neural networks (ANN) . Based on this relationship, the monitoring data measured on the real bridge can be processed, and predictions about the bridge’s actual condition can be made to support maintenance and improve the safety and sustainability of the structure. This approach demonstrates the potential of DT and AI in structural health monitoring techniques.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
qing完成签到 ,获得积分10
2秒前
4秒前
5秒前
ding应助柚子苗采纳,获得10
6秒前
shuan完成签到,获得积分10
7秒前
8秒前
Jasper应助英勇的电话采纳,获得10
9秒前
9秒前
healer完成签到,获得积分10
9秒前
跳跃的冷卉完成签到 ,获得积分10
9秒前
666发布了新的文献求助10
10秒前
healer发布了新的文献求助10
13秒前
14秒前
果冻完成签到 ,获得积分10
15秒前
15秒前
16秒前
16秒前
李爱国应助早睡早起采纳,获得10
16秒前
16秒前
17秒前
柚子苗完成签到,获得积分20
17秒前
朴素砖家完成签到,获得积分10
19秒前
刺猬发布了新的文献求助10
20秒前
Hey完成签到 ,获得积分10
20秒前
科研小白发布了新的文献求助10
20秒前
科研通AI6应助come采纳,获得10
22秒前
22秒前
23秒前
明亮的酸奶完成签到,获得积分10
24秒前
sleep应助dazhi采纳,获得10
25秒前
刺猬完成签到,获得积分10
28秒前
小刚完成签到,获得积分0
29秒前
29秒前
SSSS完成签到,获得积分10
29秒前
脆啵啵马克宝完成签到 ,获得积分10
30秒前
cossen完成签到,获得积分10
31秒前
星辰大海应助帝国超级硕士采纳,获得100
31秒前
32秒前
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1541
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
Using Genomics to Understand How Invaders May Adapt: A Marine Perspective 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5498744
求助须知:如何正确求助?哪些是违规求助? 4595848
关于积分的说明 14450216
捐赠科研通 4528879
什么是DOI,文献DOI怎么找? 2481735
邀请新用户注册赠送积分活动 1465732
关于科研通互助平台的介绍 1438611