Denoising for ECG signals based on VMD and RLS

降噪 人工智能 计算机科学 模式识别(心理学)
作者
Chenhua Zhang,Wenjie Chen,Hongda Chen
出处
期刊:Journal of measurements in engineering [JVE International Ltd.]
标识
DOI:10.21595/jme.2025.24577
摘要

Electrocardiogram (ECG) signals often encounter various types of noise interference, which annihilates their waveform characteristics and exhibits strong instability. To facilitate clinical diagnosis and analysis, it is necessary to perform denoising processing in advance. A denoising method for ECG signals based on variational mode decomposition (VMD) and recursive least square (RLS) has been proposed. VMD was used for the modal decomposition of noisy ECG signals, and the recursive least square (RLS) algorithm was used for adaptive filtering of various intrinsic mode functions (IMFs) components. The problem construction, solution, and decomposition characteristics of VMD were analyzed. The IMFs filtered by RLS were reconstructed. This achieved the elimination of interference noise in the ECG signal. The Sym8 wavelet basis, LMS, NLMS, RLS, and VMD-RLS denoising method were compared by using ECG signals including Gaussian white noise, baseband drift, electrode motion, electromyographic interference, and electrical interference noise. The experimental results showed that the VMD-RLS denoising method has significantly better denoising performance than the other four methods, achieving better values in the quantitative evaluation indicators. This algorithm improved convergence speed and signal estimation accuracy, and it has good effectiveness, superiority, and practicality. Therefore, the VMD-RLS denoising method can enable doctors and researchers to analyze and diagnose ECG signals of heart diseases more accurately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
why发布了新的文献求助10
2秒前
3秒前
袁庚完成签到 ,获得积分10
4秒前
情怀应助后会无期采纳,获得10
5秒前
qiangning完成签到,获得积分10
5秒前
田様应助帅气念梦采纳,获得10
6秒前
7秒前
Ysj完成签到,获得积分10
7秒前
11秒前
fatcat发布了新的文献求助30
12秒前
健忘的初翠完成签到,获得积分10
13秒前
英姑应助why采纳,获得10
13秒前
Ava应助热情的幻丝采纳,获得10
13秒前
小马甲应助行歌采纳,获得10
14秒前
科研通AI2S应助眼睛大蹇采纳,获得10
15秒前
西瓜皮完成签到 ,获得积分10
15秒前
曲佳鑫发布了新的文献求助10
15秒前
16秒前
爆米花应助Roxy采纳,获得10
17秒前
17秒前
ShaoyunJia完成签到,获得积分10
18秒前
20秒前
JamesPei应助zzz采纳,获得10
21秒前
天雨流芳发布了新的文献求助10
21秒前
22秒前
ewyzero应助拉稀摆带采纳,获得10
22秒前
22秒前
ShaoyunJia发布了新的文献求助10
22秒前
pc完成签到,获得积分10
23秒前
23秒前
26秒前
行歌发布了新的文献求助10
27秒前
27秒前
kkk发布了新的文献求助10
28秒前
科研通AI5应助云上人采纳,获得10
28秒前
dada完成签到 ,获得积分10
29秒前
ewyzero应助拉稀摆带采纳,获得10
30秒前
feliciaaa完成签到,获得积分10
30秒前
褚白竹完成签到,获得积分10
31秒前
Lucas应助searchtodosth采纳,获得10
32秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819381
求助须知:如何正确求助?哪些是违规求助? 3362450
关于积分的说明 10417109
捐赠科研通 3080593
什么是DOI,文献DOI怎么找? 1694642
邀请新用户注册赠送积分活动 814719
科研通“疑难数据库(出版商)”最低求助积分说明 768403