清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Decision Trees for Managing Impaired Physical Mobility in Multiple Trauma Patients

查德 决策树 医学 康复 新颖性 背景(考古学) 心理干预 文档 机器学习 护理部 计算机科学 心理学 物理疗法 生物 社会心理学 古生物学 程序设计语言
作者
Ráisa Camilo Ferreira,Karen Dunn Lopez,Sue Moorhead,Anna Krupp,Bruna Valentina Zuchatti,Luciana Aparecida Costa Carvalho,Micnéias Tatiana de Souza Lacerda Botelho,Érika Christiane Marocco Duran
出处
期刊:Journal of Advanced Nursing [Wiley]
标识
DOI:10.1111/jan.17010
摘要

ABSTRACT Aim To develop and validate decision trees using conditional probabilities to identify the predictors of mortality and morbidity deterioration in trauma patients. Design A quasi‐experimental longitudinal study conducted at a Level 1 Trauma Center in São Paulo, Brazil. Method The study analysed 201 patient records using standardised nursing documentation (NANDA International and Nursing Outcomes Classification). Decision trees were constructed using the chi‐squared automatic interaction detection (CHAID) algorithm and validated through K‐fold cross‐validation to ensure model reliability. Results Decision trees identified key predictors of survival and mobility deterioration. Patients who did not require (NOC 0414) Cardiopulmonary Status but required (NOC 0210) Transfer Performance had a 97.4% survival rate. Conversely, those requiring (NOC 0414) Cardiopulmonary Status had a 25% risk of worsening mobility, compared to 9% for those who did not. K‐fold cross‐validation confirmed the model's predictive accuracy, reinforcing the robustness of the decision tree approach (Value). Conclusion Decision trees demonstrated strong predictive capabilities for mobility outcomes and mortality risk, offering a structured, data‐driven framework for clinical decision‐making. These findings underscore the importance of early mobilisation, tailored rehabilitation interventions and assistive devices in improving patient recovery. This study is among the first to apply decision trees in this context, highlighting its novelty and potential to enhance trauma critical care practices. Implications for the Profession and/or Patient Care This study highlights the potential of decision trees, a supervised machine learning method, in nursing practice by providing clear, evidence‐based guidance for clinical decision‐making. By enabling early identification of high‐risk patients, decision trees facilitate timely interventions, reduce complications and support personalised rehabilitation strategies that enhance patient safety and recovery. Impact This research addresses the challenge of improving outcomes for critically ill and trauma patients with impaired mobility by identifying effective strategies for early mobilisation and rehabilitation. The integration of artificial intelligence‐driven decision trees strengthens evidence‐based nursing practice, enhances patient education and informs scalable interventions that reduce trauma‐related complications. These findings have implications for healthcare providers, rehabilitation specialists and policymakers seeking to optimise trauma care and improve long‐term patient outcomes. Patient or Public Contribution Patients provided authorisation for the collection of their clinical data from medical records during hospitalisation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
知行者完成签到 ,获得积分10
5秒前
9秒前
Axs完成签到,获得积分10
16秒前
丁娜完成签到 ,获得积分10
24秒前
28秒前
曙光完成签到,获得积分10
42秒前
45秒前
lameliu发布了新的文献求助10
46秒前
cadcae完成签到,获得积分10
48秒前
59秒前
徐团伟完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
paopao完成签到 ,获得积分10
1分钟前
linwf完成签到 ,获得积分10
1分钟前
直率的笑翠完成签到 ,获得积分10
1分钟前
creep2020完成签到,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
快乐随心完成签到 ,获得积分10
1分钟前
2分钟前
WenJun完成签到,获得积分10
2分钟前
北国雪未消完成签到 ,获得积分10
2分钟前
宝宝熊的熊宝宝完成签到,获得积分10
2分钟前
陈糯米完成签到,获得积分10
2分钟前
rockyshi完成签到 ,获得积分10
2分钟前
xiaosui完成签到 ,获得积分10
3分钟前
乐正怡完成签到 ,获得积分0
3分钟前
独孤完成签到 ,获得积分10
3分钟前
zhang完成签到 ,获得积分10
3分钟前
lql完成签到 ,获得积分10
4分钟前
积极废物完成签到 ,获得积分10
4分钟前
4分钟前
微解感染发布了新的文献求助30
4分钟前
5分钟前
天天快乐应助微解感染采纳,获得30
5分钟前
兰岚完成签到,获得积分10
5分钟前
monk完成签到 ,获得积分10
5分钟前
ljn应助魔幻的妖丽采纳,获得10
5分钟前
6分钟前
高分求助中
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 2500
Future Approaches to Electrochemical Sensing of Neurotransmitters 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Finite Groups: An Introduction 800
壮语核心名词的语言地图及解释 700
ВЕРНЫЙ ДРУГ КИТАЙСКОГО НАРОДА СЕРГЕЙ ПОЛЕВОЙ 500
ВОЗОБНОВЛЕН ВЫПУСК ЖУРНАЛА "КИТАЙ" НА РУССКОМ ЯЗЫКЕ 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3906913
求助须知:如何正确求助?哪些是违规求助? 3452375
关于积分的说明 10870230
捐赠科研通 3178230
什么是DOI,文献DOI怎么找? 1755844
邀请新用户注册赠送积分活动 849133
科研通“疑难数据库(出版商)”最低求助积分说明 791370