亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Decision Trees for Managing Impaired Physical Mobility in Multiple Trauma Patients

查德 决策树 医学 康复 新颖性 背景(考古学) 心理干预 文档 机器学习 护理部 计算机科学 心理学 物理疗法 生物 社会心理学 古生物学 程序设计语言
作者
Ráisa Camilo Ferreira,Karen Dunn Lopez,Sue Moorhead,Anna Krupp,Bruna Valentina Zuchatti,Luciana Aparecida Costa Carvalho,Micnéias Tatiana de Souza Lacerda Botelho,Érika Christiane Marocco Duran
出处
期刊:Journal of Advanced Nursing [Wiley]
标识
DOI:10.1111/jan.17010
摘要

ABSTRACT Aim To develop and validate decision trees using conditional probabilities to identify the predictors of mortality and morbidity deterioration in trauma patients. Design A quasi‐experimental longitudinal study conducted at a Level 1 Trauma Center in São Paulo, Brazil. Method The study analysed 201 patient records using standardised nursing documentation (NANDA International and Nursing Outcomes Classification). Decision trees were constructed using the chi‐squared automatic interaction detection (CHAID) algorithm and validated through K‐fold cross‐validation to ensure model reliability. Results Decision trees identified key predictors of survival and mobility deterioration. Patients who did not require (NOC 0414) Cardiopulmonary Status but required (NOC 0210) Transfer Performance had a 97.4% survival rate. Conversely, those requiring (NOC 0414) Cardiopulmonary Status had a 25% risk of worsening mobility, compared to 9% for those who did not. K‐fold cross‐validation confirmed the model's predictive accuracy, reinforcing the robustness of the decision tree approach (Value). Conclusion Decision trees demonstrated strong predictive capabilities for mobility outcomes and mortality risk, offering a structured, data‐driven framework for clinical decision‐making. These findings underscore the importance of early mobilisation, tailored rehabilitation interventions and assistive devices in improving patient recovery. This study is among the first to apply decision trees in this context, highlighting its novelty and potential to enhance trauma critical care practices. Implications for the Profession and/or Patient Care This study highlights the potential of decision trees, a supervised machine learning method, in nursing practice by providing clear, evidence‐based guidance for clinical decision‐making. By enabling early identification of high‐risk patients, decision trees facilitate timely interventions, reduce complications and support personalised rehabilitation strategies that enhance patient safety and recovery. Impact This research addresses the challenge of improving outcomes for critically ill and trauma patients with impaired mobility by identifying effective strategies for early mobilisation and rehabilitation. The integration of artificial intelligence‐driven decision trees strengthens evidence‐based nursing practice, enhances patient education and informs scalable interventions that reduce trauma‐related complications. These findings have implications for healthcare providers, rehabilitation specialists and policymakers seeking to optimise trauma care and improve long‐term patient outcomes. Patient or Public Contribution Patients provided authorisation for the collection of their clinical data from medical records during hospitalisation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
潇潇暮雨发布了新的文献求助10
6秒前
13秒前
starleo发布了新的文献求助30
18秒前
正直夜安完成签到 ,获得积分10
32秒前
54秒前
IgorLi发布了新的文献求助10
57秒前
幸运小猫发布了新的文献求助10
1分钟前
科目三应助科研通管家采纳,获得10
1分钟前
2分钟前
2分钟前
滕皓轩完成签到 ,获得积分20
2分钟前
lixuebin发布了新的文献求助10
3分钟前
lixuebin完成签到 ,获得积分10
4分钟前
天天快乐应助学术混子采纳,获得10
5分钟前
5分钟前
学术混子发布了新的文献求助10
5分钟前
科目三应助八分饱采纳,获得10
5分钟前
博ge完成签到 ,获得积分10
5分钟前
科研通AI5应助科研通管家采纳,获得10
5分钟前
潇潇暮雨完成签到,获得积分10
5分钟前
笨笨山芙完成签到 ,获得积分10
7分钟前
英姑应助捡小石子的璇璇采纳,获得10
7分钟前
wenbinvan完成签到,获得积分0
7分钟前
NexusExplorer应助幸运小猫采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
科研通AI2S应助科研通管家采纳,获得10
7分钟前
7分钟前
影月发布了新的文献求助10
7分钟前
小马甲应助就叫希望吧采纳,获得10
8分钟前
9分钟前
9分钟前
山水完成签到 ,获得积分10
9分钟前
oscar完成签到,获得积分10
10分钟前
lithium完成签到 ,获得积分10
10分钟前
李志全完成签到 ,获得积分10
10分钟前
dream完成签到 ,获得积分10
11分钟前
胖小羊完成签到 ,获得积分10
11分钟前
11分钟前
幸运小猫发布了新的文献求助10
11分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
高温高圧下融剤法によるダイヤモンド単結晶の育成と不純物の評価 5000
苏州地下水中新污染物及其转化产物的非靶向筛查 500
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 500
Vertebrate Palaeontology, 5th Edition 500
ISO/IEC 24760-1:2025 Information security, cybersecurity and privacy protection — A framework for identity management 500
碳捕捉技术能效评价方法 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4729588
求助须知:如何正确求助?哪些是违规求助? 4085221
关于积分的说明 12633935
捐赠科研通 3792736
什么是DOI,文献DOI怎么找? 2094420
邀请新用户注册赠送积分活动 1120272
科研通“疑难数据库(出版商)”最低求助积分说明 996345