亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Timescale Matters: Finer Temporal Resolution Influences Driver Contributions to Global Soil Respiration

环境科学 代理(统计) 时间分辨率 大气科学 时间尺度 降水 气候学 植被(病理学) 生态系统 自然地理学 生态学 地理 气象学 统计 数学 生物 物理 量子力学 地质学 医学 病理
作者
Benjamin Laffitte,Tao Zhou,Zhihan Yang,Philippe Ciais,Jinshi Jian,Ni Huang,Barnabas C. Seyler,Xiangjun Pei,Xiaolu Tang
出处
期刊:Global Change Biology [Wiley]
卷期号:31 (3)
标识
DOI:10.1111/gcb.70118
摘要

Understanding the dynamics of soil respiration (Rs) and its environmental drivers is crucial for accurately modeling terrestrial carbon fluxes. However, current methodologies often lead to divergent estimates and rely on annual predictions that may overlook critical interactions occurring at seasonal scales. A critical knowledge gap lies in understanding how temporal resolution affects both Rs predictions and their environmental drivers. Here, we employ deep learning models to predict global Rs at monthly (MRM) and annual (ARM) scales from 1982 to 2018. We then consider three main drivers potentially affecting Rs, including temperature, precipitation, and a vegetation proxy (leaf area index; LAI). Our models demonstrate strong predictive capabilities with global Rs estimation of 79.4 ± 5.7 Pg C year-1 for the MRM and 78.3 ± 7.5 Pg C year-1 for ARM (mean ± SD). While the difference in global estimations between both models is small, there are notable disparities in the spatial contribution of dominant drivers. The MRM highlights an influence of both temperature and LAI, while the ARM emphasizes a dominant role of precipitation. These findings underscore the critical role of temporal resolution in capturing seasonal variations and identifying key Rs-environment relationships that annual models may obscure. High temporal resolution Rs predictions, such as those provided by the MRM, are essential for capturing nuanced seasonal interactions between Rs and its drivers, refining carbon flux models, detecting critical seasonal thresholds, and enhancing the reliability of future Earth system predictions. This work highlights the need for further research into monthly and seasonal Rs variations, as well as higher timescale resolutions, to advance our understanding of ecosystem carbon dynamics in a rapidly changing climate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独的问凝完成签到,获得积分10
15秒前
西吴完成签到 ,获得积分10
15秒前
单纯的爆米花完成签到,获得积分10
22秒前
32秒前
乐乐应助科研通管家采纳,获得10
33秒前
星辰大海应助科研通管家采纳,获得10
33秒前
1分钟前
lin完成签到,获得积分10
1分钟前
lin发布了新的文献求助10
1分钟前
caca完成签到,获得积分0
1分钟前
一路微笑完成签到,获得积分10
2分钟前
hwen1998完成签到 ,获得积分10
2分钟前
LRxxx完成签到 ,获得积分10
2分钟前
Akim应助科研通管家采纳,获得10
2分钟前
3分钟前
科研通AI5应助大喵采纳,获得10
3分钟前
敬敬完成签到,获得积分10
3分钟前
3分钟前
大喵发布了新的文献求助10
3分钟前
Orange应助大只佬采纳,获得10
3分钟前
3分钟前
阿贵完成签到,获得积分20
4分钟前
Eason完成签到,获得积分10
4分钟前
个性归尘应助科研通管家采纳,获得30
4分钟前
可爱的函函应助唠叨的乞采纳,获得10
4分钟前
4分钟前
搜集达人应助大喵采纳,获得10
4分钟前
MDZZZZZ发布了新的文献求助10
5分钟前
Waris完成签到 ,获得积分10
5分钟前
5分钟前
liu发布了新的文献求助10
5分钟前
科研通AI5应助liu采纳,获得10
5分钟前
5分钟前
liu完成签到,获得积分10
5分钟前
ydning33发布了新的文献求助10
5分钟前
ydning33完成签到,获得积分10
5分钟前
Caili完成签到,获得积分10
5分钟前
科研通AI5应助ch采纳,获得100
5分钟前
科研通AI5应助ch采纳,获得10
5分钟前
CATH完成签到 ,获得积分10
6分钟前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
SPECIAL FEATURES OF THE EXCHANGE INTERACTIONS IN ORTHOFERRITE-ORTHOCHROMITES 200
Fast method for calculating cutoff frequencies in single-mode fibres with arbitrary index profiles 200
Null Objects from a Cross-Linguistic and Developmental Perspective 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3833773
求助须知:如何正确求助?哪些是违规求助? 3376203
关于积分的说明 10492321
捐赠科研通 3095828
什么是DOI,文献DOI怎么找? 1704713
邀请新用户注册赠送积分活动 820077
科研通“疑难数据库(出版商)”最低求助积分说明 771810