ELNet: An Efficient and Lightweight Network for Small Object Detection in UAV Imagery

增采样 计算机科学 目标检测 人工智能 失败 帧速率 特征(语言学) 计算机视觉 卷积(计算机科学) 特征提取 图像(数学) 模式识别(心理学) 人工神经网络 语言学 哲学 并行计算
作者
Hui Li,Jianbo Ma,Jianlin Zhang
出处
期刊:Remote Sensing [Multidisciplinary Digital Publishing Institute]
卷期号:17 (12): 2096-2096
标识
DOI:10.3390/rs17122096
摘要

Real-time object detection is critical for unmanned aerial vehicles (UAVs) performing various tasks. However, efficiently deploying detection models on UAV platforms with limited storage and computational resources remains a significant challenge. To address this issue, we propose ELNet, an efficient and lightweight object detection model based on YOLOv12n. First, based on an analysis of UAV image characteristics, we strategically remove two A2C2f modules from YOLOv12n and adjust the size and number of detection heads. Second, we propose a novel lightweight detection head, EPGHead, to alleviate the computational burden introduced by adding the large-scale detection head. In addition, since YOLOv12n employs standard convolution for downsampling, which is inefficient for extracting UAV image features, we design a novel downsampling module, EDown, to further reduce model size and enable more efficient feature extraction. Finally, to improve detection in UAV imagery with dense, small, and scale-varying objects, we propose DIMB-C3k2, an enhanced module built upon C3k2, which boosts feature extraction under complex conditions. Compared with YOLOv12n, ELNet achieves an 88.5% reduction in parameter count and a 52.3% decrease in FLOPs, while increasing mAP50 by 1.2% on the VisDrone dataset and 0.8% on the HIT-UAV dataset, reaching 94.7% mAP50 on HIT-UAV. Furthermore, the model achieves a frame rate of 682 FPS, highlighting its superior computational efficiency without sacrificing detection accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
长情钧完成签到 ,获得积分10
刚刚
SYLH应助qingsyxuan采纳,获得10
1秒前
1秒前
wanci应助Hh采纳,获得10
1秒前
HUJL完成签到,获得积分10
1秒前
3秒前
3秒前
4秒前
量子星尘发布了新的文献求助10
5秒前
tgd完成签到,获得积分10
7秒前
8秒前
9秒前
9秒前
李菠萝完成签到,获得积分10
11秒前
安安发布了新的文献求助10
13秒前
13秒前
14秒前
15秒前
田様应助易安采纳,获得30
15秒前
15秒前
冷艳晓丝完成签到,获得积分10
15秒前
星辰大海应助Zjn采纳,获得30
17秒前
Hh发布了新的文献求助10
18秒前
里昂aaa完成签到,获得积分20
19秒前
20秒前
包容小刺猬完成签到 ,获得积分10
21秒前
dnnnsns完成签到,获得积分10
21秒前
xxx发布了新的文献求助10
21秒前
黄容发布了新的文献求助10
22秒前
顾矜应助新之助采纳,获得10
23秒前
24秒前
纯真冰淇淋完成签到,获得积分20
24秒前
25秒前
背后的鞋垫完成签到,获得积分10
25秒前
薛不会发布了新的文献求助10
25秒前
可爱的函函应助111采纳,获得10
25秒前
26秒前
Infinit发布了新的文献求助10
28秒前
29秒前
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952868
求助须知:如何正确求助?哪些是违规求助? 3498310
关于积分的说明 11091370
捐赠科研通 3228948
什么是DOI,文献DOI怎么找? 1785159
邀请新用户注册赠送积分活动 869202
科研通“疑难数据库(出版商)”最低求助积分说明 801377