Correlation Information Enhanced Graph Anomaly Detection via Hypergraph Transformation

超图 相关性 异常检测 图形 转化(遗传学) 异常(物理) 计算机科学 数学 数据挖掘 理论计算机科学 组合数学 物理 生物 遗传学 几何学 基因 凝聚态物理
作者
Changqin Huang,Chengling Gao,Ming Li,Yongzhi Li,Xizhe Wang,Yunliang Jiang,Xiaodi Huang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14 被引量:3
标识
DOI:10.1109/tcyb.2025.3558941
摘要

Graph anomaly detection (GAD) has attracted increasing interest due to its critical role in diverse real-world applications. Graph neural networks (GNNs) offer a promising avenue for GAD, leveraging their exceptional capacity to model complex graph structures and relationships. However, existing GNN-based models encounter challenges in addressing the GAD's fundamental issue-anomaly camouflage, where anomalies mimic normal instances, leading to indistinguishable features. In this article, we propose a novel approach, termed correlation information enhanced GAD (CIE-GAD). Specifically, drawing on the observation that the distribution of homophilic and heterophilic edges differs between abnormal and normal samples, we construct a hypergraph to learn the co-occurrence relationships among adjacent edges. By enhancing the extraction of sample correlation information, we effectively tackle feature similarity caused by anomaly camouflage, thereby enhancing the performance of GAD. Furthermore, we develop a spectral convolution mechanism based on node-level attention fusion, enabling the capture of multifrequency signals. This module performs adaptive fusion tailored to the unique frequency information requirements of each node, mitigating the local heterophily problem. Extensive experiments on various real-world GAD datasets demonstrate that the proposed CIE-GAD outperforms state-of-the-art methods. Notably, our approach achieves AUC-PR improvements of up to 3.47%, with an average gain of 1.5%, demonstrating its effectiveness in detecting anomalies in graph data.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lalala应助科研通管家采纳,获得10
刚刚
刚刚
派大星应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
星辰大海应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
刚刚
Akim应助ZY采纳,获得10
1秒前
苏苏完成签到 ,获得积分10
2秒前
踏实以蕊发布了新的文献求助10
4秒前
wanci应助能干靖儿采纳,获得10
5秒前
顶上之战发布了新的文献求助30
5秒前
6秒前
6秒前
zoujianqiao完成签到 ,获得积分10
7秒前
无限安蕾完成签到,获得积分10
8秒前
笑笑发布了新的文献求助10
8秒前
Pengzhuhuai发布了新的文献求助10
9秒前
镓氧锌钇铀应助zhaojiabao采纳,获得10
9秒前
李爱国应助无限安蕾采纳,获得10
11秒前
12秒前
12秒前
在水一方应助虞美人采纳,获得10
12秒前
12秒前
13秒前
ytc完成签到,获得积分10
14秒前
16秒前
英俊的铭应助树袋采纳,获得10
18秒前
墨白白发布了新的文献求助10
18秒前
zj杰发布了新的文献求助10
19秒前
19秒前
光亮平蓝发布了新的文献求助10
20秒前
21秒前
23秒前
23秒前
24秒前
乐乐应助林摆摆采纳,获得10
24秒前
Vito完成签到,获得积分10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300369
求助须知:如何正确求助?哪些是违规求助? 4448262
关于积分的说明 13845572
捐赠科研通 4333969
什么是DOI,文献DOI怎么找? 2379255
邀请新用户注册赠送积分活动 1374403
关于科研通互助平台的介绍 1340056