EGMOF: Efficient Generation of Metal-Organic Frameworks Using a Hybrid Diffusion-Transformer Architecture

作者
Seunghee Han,Yeonghun Kang,Tae‐Sung Bae,Varinia Bernales,Alán Aspuru‐Guzik,Jihan Kim
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2511.03122
摘要

Designing materials with targeted properties remains challenging due to the vastness of chemical space and the scarcity of property-labeled data. While recent advances in generative models offer a promising way for inverse design, most approaches require large datasets and must be retrained for every new target property. Here, we introduce the EGMOF (Efficient Generation of MOFs), a hybrid diffusion-transformer framework that overcomes these limitations through a modular, descriptor-mediated workflow. EGMOF decomposes inverse design into two steps: (1) a one-dimensional diffusion model (Prop2Desc) that maps desired properties to chemically meaningful descriptors followed by (2) a transformer model (Desc2MOF) that generates structures from these descriptors. This modular hybrid design enables minimal retraining and maintains high accuracy even under small-data conditions. On a hydrogen uptake dataset, EGMOF achieved over 95% validity and 84% hit rate, representing significant improvements of up to 57% in validity and 14% in hit rate compared to existing methods, while remaining effective with only 1,000 training samples. Moreover, our model successfully performed conditional generation across 29 diverse property datasets, including CoREMOF, QMOF, and text-mined experimental datasets, whereas previous models have not. This work presents a data-efficient, generalizable approach to the inverse design of diverse MOFs and highlights the potential of modular inverse design workflows for broader materials discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助疯狂的寻琴采纳,获得10
刚刚
当当发布了新的文献求助10
刚刚
今后应助自觉的曼波采纳,获得10
1秒前
活力的泥猴桃完成签到 ,获得积分10
2秒前
2秒前
Owen应助孤独的璎采纳,获得10
3秒前
今夜无人入眠完成签到,获得积分20
3秒前
4秒前
linpeng发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
6秒前
7秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
8秒前
8秒前
香蕉觅云应助dmyy313235采纳,获得10
8秒前
10秒前
百杜发布了新的文献求助10
10秒前
怕孤单的雪萍完成签到,获得积分10
10秒前
11秒前
CCsci发布了新的文献求助10
11秒前
11秒前
11秒前
freezing发布了新的文献求助10
12秒前
不倒翁37发布了新的文献求助10
12秒前
13秒前
绿绿完成签到,获得积分10
13秒前
13秒前
13秒前
13秒前
151515发布了新的文献求助10
14秒前
顽主发布了新的文献求助10
15秒前
思源应助俄而采纳,获得10
15秒前
隐形曼青应助任性翩跹采纳,获得10
16秒前
妍Y发布了新的文献求助10
16秒前
renxiangao发布了新的文献求助10
17秒前
17秒前
高分求助中
Fermented Coffee Market 2000
合成生物食品制造技术导则,团体标准,编号:T/CITS 396-2025 1000
The Leucovorin Guide for Parents: Understanding Autism’s Folate 1000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Comparing natural with chemical additive production 500
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5243324
求助须知:如何正确求助?哪些是违规求助? 4409688
关于积分的说明 13726113
捐赠科研通 4279143
什么是DOI,文献DOI怎么找? 2347946
邀请新用户注册赠送积分活动 1345283
关于科研通互助平台的介绍 1303352