Data-driven performance analysis of a residential building applying artificial neural network (ANN) and multi-objective genetic algorithm (GA)

托普西斯 人工神经网络 遗传算法 能源消耗 灵敏度(控制系统) 理想溶液 工程类 优化设计 计算机科学 数学优化 机器学习 运筹学 数学 热力学 电气工程 物理 电子工程
作者
Seyed Mohammad Ebrahimi Saryazdi,Alireza Etemad,Ali Shafaat,Ammar M. Bahman
出处
期刊:Building and Environment [Elsevier BV]
卷期号:225: 109633-109633 被引量:66
标识
DOI:10.1016/j.buildenv.2022.109633
摘要

Residential buildings account for nearly 60% of electrical energy consumption in hot climates as in Kuwait. As a result, this study proposes a reliable multi-objective model to obtain the optimal design for a typical residential Kuwaiti building by integrating an Artificial Neural Network (ANN) model with Genetic Algorithm (GA) optimization method. The ANN model was investigated and verified using the results of building performance simulations applying EnergyPlus software. The effects of sample size of dataset on performance of ANN were evaluated. The final optimal building design was optimized using the GA method after ensuring the convergence of the final ANN model. Several design and operation parameters were considered as decision variables, while cooling energy consumption, discomfort hours, and equivalent carbon emissions were selected as objective functions. In addition, sensitivity analysis was conducted to evaluate the impacts of decision variables on objective functions. The sensitivity results indicated that insulation highly affect energy consumption and carbon emission, while cooling setpoint played a key role in discomfort hours. Furthermore, Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) method was applied for decision-making among Pareto optimal solutions. The results showed that the optimal solution suggested by TOPSIS methods using ANN-based model provided a substantial reduction in energy consumption, discomfort hours, and carbon emission up to 39.3%, 62.8%, and 40.5% compared with the base case, respectively. It is recommended that further research be undertaken in considering uncertainty parameters on optimization process and applying the developed framework for building in different climate.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
科研通AI5应助AlexLee采纳,获得10
3秒前
科研通AI2S应助米鹿采纳,获得10
9秒前
木木发布了新的文献求助10
10秒前
10秒前
星辰大海应助lza采纳,获得10
10秒前
11秒前
12秒前
顾矜应助健忘天与采纳,获得10
13秒前
kai0305完成签到,获得积分10
15秒前
如约而至发布了新的文献求助10
16秒前
18秒前
Jay发布了新的文献求助10
19秒前
22秒前
lza发布了新的文献求助10
22秒前
dengy完成签到,获得积分10
23秒前
25秒前
无花果应助AlexLee采纳,获得10
25秒前
26秒前
27秒前
Akim应助愤怒的河虾采纳,获得10
28秒前
28秒前
28秒前
xgx984发布了新的文献求助10
28秒前
酷波er应助孤独的醉易采纳,获得30
28秒前
科研小白发布了新的文献求助30
29秒前
lza完成签到,获得积分10
30秒前
30秒前
31秒前
Vincentliu发布了新的文献求助10
32秒前
34秒前
自觉柠檬发布了新的文献求助10
34秒前
HongJiang发布了新的文献求助10
34秒前
AlexLee发布了新的文献求助20
34秒前
尹三金完成签到 ,获得积分10
35秒前
jenningseastera应助guoguo采纳,获得30
39秒前
阿鹿462发布了新的文献求助10
39秒前
云锋完成签到,获得积分10
40秒前
fei完成签到 ,获得积分10
41秒前
勤恳惮完成签到,获得积分10
42秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829306
求助须知:如何正确求助?哪些是违规求助? 3371976
关于积分的说明 10470185
捐赠科研通 3091557
什么是DOI,文献DOI怎么找? 1701232
邀请新用户注册赠送积分活动 818315
科研通“疑难数据库(出版商)”最低求助积分说明 770805