膜
单层
渗透力
材料科学
功率密度
电流密度
电荷密度
化学工程
化学物理
多孔性
共价键
纳米技术
分析化学(期刊)
复合材料
化学
色谱法
功率(物理)
热力学
有机化学
反渗透
正渗透
物理
工程类
量子力学
生物化学
作者
Zhiwei Huang,Munan Fang,Bin Tu,Jinlei Yang,Zhuang Yan,Haftu Gebrekiros Alemayehu,Zhiyong Tang,Lianshan Li
出处
期刊:ACS Nano
[American Chemical Society]
日期:2022-09-27
卷期号:16 (10): 17149-17156
被引量:35
标识
DOI:10.1021/acsnano.2c07555
摘要
Low membrane conductivity originated from a high membrane thickness has long been the "Achilles heel" of the conventional polymeric membrane, greatly hampering the improvement of the output power density in osmotic power generation. Herein, we demonstrate a molecularly-thin two-dimensional (2D) covalent organic framework (COF) monolayer membrane, featured with ultimate thickness, high pore density, and tight pore size distribution, which performs as a highly efficient osmotic power generator. Despite the large pore size up to 3.8 nm and relatively low surface charge density of 2.2 mC m-2, the monolayer COF membrane exhibits a high osmotic current density of 16.7 kA m-2 and an output power density of 102 W m-2 under 50 times the NaCl salinity gradient (0.5 M/0.01 M). This superior power density could be further improved to 170 W m-2 in the real seawater/river water gradient system. When the large pore size and low surface charge density are considered, this superior performance is not expected. Computational studies further reveal that the ultimate membrane permeability originated from the high membrane porosity, rather than ion selectivity, plays a dominant role in the production of high current density, especially under high salinity. This work provides an alternative strategy to realize improved output power density in ultrapermeable membranes.
科研通智能强力驱动
Strongly Powered by AbleSci AI