HSM-QA: Question Answering System Based on Hierarchical Semantic Matching

计算机科学 答疑 成对比较 匹配(统计) 情报检索 集合(抽象数据类型) 查询扩展 模棱两可 相关性(法律) 方案(数学) 相似性(几何) 自然语言处理 人工智能 数学分析 统计 数学 政治学 法学 图像(数学) 程序设计语言
作者
Jinlu Zhang,Jiarong He,Yiyi Zhou,Xiaoshuai Sun,Xiao Yu
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 77826-77839
标识
DOI:10.1109/access.2023.3296850
摘要

In recent years, Question Answering (QA) systems have gained popularity as a means of acquiring knowledge. However, the prevalent approach of matching question-answer pairs still suffers from low precision and efficiency due to the inherent ambiguity of natural language descriptions. To address these issues, we propose a novel QA approach based on hierarchical semantic matching, termed HSM-QA. Specifically, HSM-QA is decomposed into two main steps, i.e., query-question and query-answer matchings, respectively. For query-question matching, a Siamese network is applied to calculate the similarity between query-question pairs, which recalls the most similar questions and their corresponding answers as candidates. In terms of query-answer matching, we adopt the idea of the pairwise algorithm and propose a single-stream structure to calculate the relevance between query and answer, based on which the best-matching candidates are ranked and returned. After training, these two steps are combined as an efficient QA scheme for different languages, e.g ., English and Chinese. Furthermore, to address the lack of Chinese QA datasets, we collect a massive amount of text data from Chinese social media and generate a new dataset via a pre-trained language model. Extensive experiments are conducted on six QA datasets to validate our HSM-QA. The experimental results demonstrate the superior performance and efficiency of our method than a set of compared methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
wbhou完成签到 ,获得积分10
刚刚
mescal完成签到,获得积分10
刚刚
zho发布了新的文献求助10
刚刚
刚刚
1秒前
xiaoxu发布了新的文献求助10
1秒前
慕青应助金闪闪采纳,获得10
1秒前
超帅沂完成签到,获得积分10
1秒前
诚心闭月发布了新的文献求助10
2秒前
HEAUBOOK举报HJY求助涉嫌违规
2秒前
sunglow11完成签到,获得积分0
2秒前
kevin完成签到,获得积分20
2秒前
鹿c3完成签到,获得积分10
2秒前
2秒前
HDJ完成签到,获得积分10
2秒前
3秒前
4秒前
4秒前
Lshyong完成签到 ,获得积分10
4秒前
生动幻莲完成签到,获得积分20
4秒前
风中老三完成签到,获得积分10
4秒前
4秒前
4秒前
留胡子的画板完成签到,获得积分10
5秒前
5秒前
缪甲烷完成签到,获得积分10
5秒前
欣喜宛亦完成签到,获得积分10
5秒前
6秒前
6秒前
杰瑞完成签到,获得积分10
6秒前
优雅小霜完成签到,获得积分20
7秒前
nihaoya发布了新的文献求助20
7秒前
Haley发布了新的文献求助30
7秒前
ahsh发布了新的文献求助10
8秒前
科研狗发布了新的文献求助10
9秒前
9秒前
ice完成签到,获得积分20
9秒前
jiayou完成签到,获得积分10
9秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Pharmacological profile of sulodexide 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3804427
求助须知:如何正确求助?哪些是违规求助? 3349333
关于积分的说明 10343655
捐赠科研通 3065398
什么是DOI,文献DOI怎么找? 1683064
邀请新用户注册赠送积分活动 808683
科研通“疑难数据库(出版商)”最低求助积分说明 764669