The Current Progress of Tetrahedral DNA Nanostructure for Antibacterial Application and Bone Tissue Regeneration

纳米载体 再生(生物学) 纳米技术 DNA 纳米材料 材料科学 脚手架 纳米结构 DNA折纸 生物物理学 细胞生物学 化学 生物 生物医学工程 生物化学 药物输送 医学
作者
Shebin Hong,Weidong Jiang,Qinfeng Ding,Kaili Lin,Cancan Zhao,Xudong Wang
出处
期刊:International Journal of Nanomedicine [Dove Medical Press]
卷期号:Volume 18: 3761-3780 被引量:14
标识
DOI:10.2147/ijn.s403882
摘要

Abstract: Recently, programmable assembly technologies have enabled the application of DNA in the creation of new nanomaterials with unprecedented functionality. One of the most common DNA nanostructures is the tetrahedral DNA nanostructure (TDN), which has attracted great interest worldwide due to its high stability, simple assembly procedure, high predictability, perfect programmability, and excellent biocompatibility. The unique spatial structure of TDN allows it to penetrate cell membranes in abundance and regulate cellular biological properties as a natural genetic material. Previous studies have demonstrated that TDNs can regulate various cellular biological properties, including promoting cells proliferation, migration and differentiation, inhibiting cells apoptosis, as well as possessing anti-inflammation and immunomodulatory capabilities. Furthermore, functional molecules can be easily modified at the vertices of DNA tetrahedron, DNA double helix structure, DNA tetrahedral arms or DNA tetrahedral cage structure, enabling TDN to be used as a nanocarrier for a variety of biological applications, including targeted therapies, molecular diagnosis, biosensing, antibacterial treatment, antitumor strategies, and tissue regeneration. In this review, we mainly focus on the current progress of TDN-based nanomaterials for antimicrobial applications, bone and cartilage tissue repair and regeneration. The synthesis and characterization of TDN, as well as the biological merits are introduced. In addition, the challenges and prospects of TDN-based nanomaterials are also discussed. Graphical Abstract: Keywords: tetrahedral DNA nanostructure, carriers, antibacterial treatment, bone regeneration, cartilage regeneration
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
凶狠的盼柳完成签到,获得积分10
3秒前
3秒前
哈哈哈哈完成签到,获得积分20
4秒前
4秒前
aaaaarfv发布了新的文献求助10
5秒前
地质学一点应助飘逸鑫采纳,获得10
5秒前
小巧亦竹发布了新的文献求助10
6秒前
guiness发布了新的文献求助10
6秒前
山下梅子酒完成签到 ,获得积分10
7秒前
8秒前
大家好完成签到 ,获得积分10
8秒前
luobaohua2008发布了新的文献求助10
8秒前
酷波er应助阳光凡儿采纳,获得10
8秒前
科研通AI5应助矮小的元灵采纳,获得10
9秒前
9秒前
9秒前
英俊的铭应助NameSL采纳,获得10
10秒前
迷路安雁完成签到,获得积分10
10秒前
11秒前
xiaoyu完成签到,获得积分10
12秒前
顺利小陈完成签到,获得积分10
13秒前
Princess完成签到,获得积分10
13秒前
研友_yLpYkn发布了新的文献求助30
13秒前
SciGPT应助一步一个脚印采纳,获得10
13秒前
曾国强完成签到,获得积分10
13秒前
桀庚发布了新的文献求助10
15秒前
哈哈哈哈关注了科研通微信公众号
19秒前
21秒前
21秒前
lucky完成签到 ,获得积分10
21秒前
521完成签到,获得积分20
23秒前
23秒前
慕青应助taetae采纳,获得10
24秒前
卢敏明发布了新的文献求助10
24秒前
25秒前
传奇3应助阔达晓博采纳,获得10
26秒前
可爱的函函应助seven采纳,获得10
26秒前
28秒前
高分求助中
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
Politiek-Politioneele Overzichten van Nederlandsch-Indië. Bronnenpublicatie, Deel II 1929-1930 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3819495
求助须知:如何正确求助?哪些是违规求助? 3362505
关于积分的说明 10417189
捐赠科研通 3080626
什么是DOI,文献DOI怎么找? 1694656
邀请新用户注册赠送积分活动 814719
科研通“疑难数据库(出版商)”最低求助积分说明 768403