材料科学
石墨烯
单层
悬空债券
扫描隧道显微镜
化学物理
范德瓦尔斯力
凝聚态物理
异质结
X射线光电子能谱
插层(化学)
费米能级
石墨烯纳米带
外延
纳米技术
电子
图层(电子)
光电子学
分子
硅
化学工程
无机化学
化学
工程类
量子力学
物理
有机化学
作者
Philip Schädlich,Chitran Ghosal,Monja Stettner,Bharti Matta,Susanne Wolff,Franziska Schölzel,Péter Richter,Mark Hutter,Anja Haags,Sabine Wenzel,Zamin Mamiyev,Julian Koch,Serguei Soubatch,Philipp Rosenzweig,Craig Polley,F. Stefan Tautz,Christian Kumpf,Kathrin Küster,Ulrich Starke,Thomas Seyller
标识
DOI:10.1002/admi.202300471
摘要
Abstract The synthesis of new graphene‐based quantum materials by intercalation is an auspicious approach. However, an accompanying proximity coupling depends crucially on the structural details of the new heterostructure. It is studied in detail the Pb monolayer structure after intercalation into the graphene buffer layer on the SiC(0001) interface by means of photoelectron spectroscopy, x‐ray standing waves, and scanning tunneling microscopy. A coherent fraction close to unity proves the formation of a flat Pb monolayer on the SiC surface. An interlayer distance of 3.67 Å to the suspended graphene underlines the formation of a truly van der Waals heterostructure. The 2D Pb layer reveals a quasi ten‐fold periodicity due to the formation of a grain boundary network, ensuring the saturation of the Si surface bonds. Moreover, the densely‐packed Pb layer also efficiently minimizes the doping influence by the SiC substrate, both from the surface dangling bonds and the SiC surface polarization, giving rise to charge‐neutral monolayer graphene. The observation of a long‐ranged () reconstruction on the graphene lattice at tunneling conditions close to Fermi energy is most likely a result of a nesting condition to be perfectly fulfilled.
科研通智能强力驱动
Strongly Powered by AbleSci AI