Performance of two large language models for data extraction in evidence synthesis

计算机科学 解析 数据提取 上传 范围(计算机科学) 插件 数据挖掘 自然语言处理 数据科学 梅德林 万维网 程序设计语言 政治学 法学
作者
Amanda Konet,Ian B. Thomas,Gerald Gartlehner,Leila C. Kahwati,Rainer Hilscher,Shannon Kugley,Karen Crotty,Meera Viswanathan,Rob Chew
出处
期刊:Research Synthesis Methods [Wiley]
卷期号:15 (5): 818-824 被引量:7
标识
DOI:10.1002/jrsm.1732
摘要

Abstract Accurate data extraction is a key component of evidence synthesis and critical to valid results. The advent of publicly available large language models (LLMs) has generated interest in these tools for evidence synthesis and created uncertainty about the choice of LLM. We compare the performance of two widely available LLMs (Claude 2 and GPT‐4) for extracting pre‐specified data elements from 10 published articles included in a previously completed systematic review. We use prompts and full study PDFs to compare the outputs from the browser versions of Claude 2 and GPT‐4. GPT‐4 required use of a third‐party plugin to upload and parse PDFs. Accuracy was high for Claude 2 (96.3%). The accuracy of GPT‐4 with the plug‐in was lower (68.8%); however, most of the errors were due to the plug‐in. Both LLMs correctly recognized when prespecified data elements were missing from the source PDF and generated correct information for data elements that were not reported explicitly in the articles. A secondary analysis demonstrated that, when provided selected text from the PDFs, Claude 2 and GPT‐4 accurately extracted 98.7% and 100% of the data elements, respectively. Limitations include the narrow scope of the study PDFs used, that prompt development was completed using only Claude 2, and that we cannot guarantee the open‐source articles were not used to train the LLMs. This study highlights the potential for LLMs to revolutionize data extraction but underscores the importance of accurate PDF parsing. For now, it remains essential for a human investigator to validate LLM extractions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tingtingzhang发布了新的文献求助10
刚刚
热心市民赵先生完成签到,获得积分10
1秒前
大海很蓝完成签到,获得积分10
3秒前
爆米花应助hometown采纳,获得10
5秒前
尉迟三颜完成签到,获得积分10
6秒前
Xinxin_Wang发布了新的文献求助10
6秒前
iris完成签到,获得积分10
6秒前
10秒前
wzh发布了新的文献求助20
10秒前
苏御丶云泽完成签到,获得积分20
11秒前
yyfdqms完成签到,获得积分10
13秒前
SciGPT应助科研通管家采纳,获得10
13秒前
无花果应助科研通管家采纳,获得10
13秒前
英俊的铭应助科研通管家采纳,获得10
14秒前
风华笔墨发布了新的文献求助10
14秒前
105完成签到,获得积分10
14秒前
乐乐应助科研通管家采纳,获得10
14秒前
星辰大海应助科研通管家采纳,获得50
14秒前
脑洞疼应助科研通管家采纳,获得10
14秒前
烟花应助科研通管家采纳,获得10
14秒前
14秒前
情怀应助科研通管家采纳,获得10
14秒前
14秒前
隐形曼青应助zc采纳,获得10
15秒前
科研通AI5应助冷酷的小凝采纳,获得10
17秒前
e746700020发布了新的文献求助10
17秒前
te0813完成签到,获得积分10
19秒前
余味应助hunter采纳,获得10
21秒前
合适忆南完成签到,获得积分10
22秒前
852应助潇洒的书文采纳,获得10
23秒前
高贵八宝粥完成签到,获得积分10
24秒前
山复尔尔完成签到,获得积分10
25秒前
27秒前
bc应助Xinxin_Wang采纳,获得30
29秒前
科研助手6应助山复尔尔采纳,获得10
29秒前
31秒前
充电宝应助wzh采纳,获得10
32秒前
hometown发布了新的文献求助10
34秒前
烂漫的雅容完成签到,获得积分10
36秒前
37秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3800344
求助须知:如何正确求助?哪些是违规求助? 3345634
关于积分的说明 10326108
捐赠科研通 3062073
什么是DOI,文献DOI怎么找? 1680801
邀请新用户注册赠送积分活动 807242
科研通“疑难数据库(出版商)”最低求助积分说明 763557