Performance of two large language models for data extraction in evidence synthesis

计算机科学 解析 数据提取 上传 范围(计算机科学) 插件 数据挖掘 自然语言处理 数据科学 梅德林 万维网 程序设计语言 政治学 法学
作者
Amanda Konet,Ian B. Thomas,Gerald Gartlehner,Leila C. Kahwati,Rainer Hilscher,Shannon Kugley,Karen Crotty,Meera Viswanathan,Robert Chew
出处
期刊:Research Synthesis Methods [Wiley]
卷期号:15 (5): 818-824 被引量:45
标识
DOI:10.1002/jrsm.1732
摘要

Abstract Accurate data extraction is a key component of evidence synthesis and critical to valid results. The advent of publicly available large language models (LLMs) has generated interest in these tools for evidence synthesis and created uncertainty about the choice of LLM. We compare the performance of two widely available LLMs (Claude 2 and GPT‐4) for extracting pre‐specified data elements from 10 published articles included in a previously completed systematic review. We use prompts and full study PDFs to compare the outputs from the browser versions of Claude 2 and GPT‐4. GPT‐4 required use of a third‐party plugin to upload and parse PDFs. Accuracy was high for Claude 2 (96.3%). The accuracy of GPT‐4 with the plug‐in was lower (68.8%); however, most of the errors were due to the plug‐in. Both LLMs correctly recognized when prespecified data elements were missing from the source PDF and generated correct information for data elements that were not reported explicitly in the articles. A secondary analysis demonstrated that, when provided selected text from the PDFs, Claude 2 and GPT‐4 accurately extracted 98.7% and 100% of the data elements, respectively. Limitations include the narrow scope of the study PDFs used, that prompt development was completed using only Claude 2, and that we cannot guarantee the open‐source articles were not used to train the LLMs. This study highlights the potential for LLMs to revolutionize data extraction but underscores the importance of accurate PDF parsing. For now, it remains essential for a human investigator to validate LLM extractions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
1秒前
冬柳发布了新的文献求助10
2秒前
bkagyin应助moxiang采纳,获得10
2秒前
霸气忆灵完成签到,获得积分20
2秒前
田国兵发布了新的文献求助10
3秒前
kd发布了新的文献求助10
3秒前
3秒前
英吉利25发布了新的文献求助10
3秒前
有信心发布了新的文献求助10
5秒前
6秒前
忞航完成签到 ,获得积分10
6秒前
6秒前
研友_VZG7GZ应助zzzp采纳,获得10
6秒前
小唐完成签到,获得积分10
7秒前
等月闲发布了新的文献求助10
8秒前
cjf发布了新的文献求助10
10秒前
钟沐晨发布了新的文献求助10
10秒前
今后应助邹益春采纳,获得20
11秒前
枫桥夜泊发布了新的文献求助10
12秒前
12秒前
852应助无私的夕阳采纳,获得10
13秒前
书虫完成签到,获得积分10
14秒前
14秒前
小蘑菇应助good慧采纳,获得10
15秒前
huan发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
17秒前
科研通AI6应助power采纳,获得10
17秒前
Hello应助沉默的天蓝采纳,获得10
18秒前
在水一方应助xyg采纳,获得10
19秒前
充电宝应助xyg采纳,获得10
19秒前
丘比特应助xyg采纳,获得10
19秒前
大龙哥886应助xyg采纳,获得10
19秒前
科研通AI6应助xyg采纳,获得10
19秒前
小马甲应助ll采纳,获得10
20秒前
20秒前
20秒前
大灰狼发布了新的文献求助10
20秒前
我是老大应助wyling采纳,获得10
21秒前
Ava应助wuchang采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Theoretical modelling of unbonded flexible pipe cross-sections 2000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
The Scope of Slavic Aspect 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5528239
求助须知:如何正确求助?哪些是违规求助? 4617793
关于积分的说明 14560622
捐赠科研通 4556594
什么是DOI,文献DOI怎么找? 2497025
邀请新用户注册赠送积分活动 1477279
关于科研通互助平台的介绍 1448572