Entropy and fractal analysis of brain-related neurophysiological signals in Alzheimer’s and Parkinson’s disease

神经生理学 神经科学 计算机科学 近似熵 人工智能 脑电图 帕金森病 人脑 疾病 分形 背景(考古学) 脑老化 熵(时间箭头) 心理学 模式识别(心理学) 医学 数学 认知 生物 物理 病理 数学分析 古生物学 量子力学
作者
Alberto Averna,Stefania Coelli,Rosanna Ferrara,S. Cerutti,Alberto Priori,Anna Maria Bianchi
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:20 (5): 051001-051001 被引量:11
标识
DOI:10.1088/1741-2552/acf8fa
摘要

Brain-related neuronal recordings, such as local field potential, electroencephalogram and magnetoencephalogram, offer the opportunity to study the complexity of the human brain at different spatial and temporal scales. The complex properties of neuronal signals are intrinsically related to the concept of 'scale-free' behavior and irregular dynamic, which cannot be fully described through standard linear methods, but can be measured by nonlinear indexes. A remarkable application of these analysis methods on electrophysiological recordings is the deep comprehension of the pathophysiology of neurodegenerative diseases, that has been shown to be associated to changes in brain activity complexity. In particular, a decrease of global complexity has been associated to Alzheimer's disease, while a local increase of brain signals complexity characterizes Parkinson's disease. Despite the recent proliferation of studies using fractal and entropy-based analysis, the application of these techniques is still far from clinical practice, due to the lack of an agreement about their correct estimation and a conclusive and shared interpretation. Along with the aim of helping towards the realization of a multidisciplinary audience to approach nonlinear methods based on the concepts of fractality and irregularity, this survey describes the implementation and proper employment of the mostly known and applied indexes in the context of Alzheimer's and Parkinson's diseases.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
酱酱酿酿发布了新的文献求助10
刚刚
香蕉觅云应助清新的Q采纳,获得10
刚刚
1秒前
yui发布了新的文献求助10
1秒前
冰魂应助无辜忆寒采纳,获得10
2秒前
win完成签到,获得积分10
3秒前
852应助boshi采纳,获得10
3秒前
SYLH应助MXene采纳,获得10
4秒前
4秒前
4秒前
7秒前
8秒前
爱上甜蜜完成签到,获得积分10
8秒前
淡然从雪发布了新的文献求助10
9秒前
ZDddd发布了新的文献求助20
9秒前
梓萱发布了新的文献求助10
9秒前
吃土弯弯完成签到,获得积分10
10秒前
Bottle完成签到,获得积分10
11秒前
今后应助大能猫采纳,获得10
11秒前
11秒前
小幸运发布了新的文献求助10
12秒前
12秒前
kunkun完成签到,获得积分10
12秒前
13秒前
君与完成签到,获得积分10
14秒前
kunkun发布了新的文献求助10
15秒前
15秒前
善良宛筠完成签到,获得积分10
15秒前
16秒前
英俊的铭应助hao采纳,获得10
16秒前
16秒前
Dreamer0422发布了新的文献求助10
17秒前
宁士萧完成签到,获得积分10
17秒前
midoli完成签到,获得积分10
17秒前
18秒前
落落完成签到,获得积分10
18秒前
ZDddd完成签到,获得积分20
18秒前
18秒前
碰允发布了新的文献求助10
19秒前
可爱的函函应助万骛采纳,获得10
20秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
成人寻常型银屑病医患共决策-海峡两岸及港澳地区专家共识 200
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829606
求助须知:如何正确求助?哪些是违规求助? 3372234
关于积分的说明 10471156
捐赠科研通 3091719
什么是DOI,文献DOI怎么找? 1701424
邀请新用户注册赠送积分活动 818380
科研通“疑难数据库(出版商)”最低求助积分说明 770853