间皮素
癌症研究
微泡
细胞毒性T细胞
肺癌
嵌合抗原受体
紫杉醇
医学
癌细胞
T细胞
抗原
癌症
免疫学
化学
免疫系统
肿瘤科
内科学
体外
小RNA
基因
生物化学
作者
Tianchuan Zhu,Zhenxing Chen,Guanmin Jiang,Xi Huang
出处
期刊:ACS Nano
[American Chemical Society]
日期:2023-08-25
卷期号:17 (17): 16770-16786
被引量:50
标识
DOI:10.1021/acsnano.3c03456
摘要
Paclitaxel (PTX)-based chemotherapy remains the main approach to treating lung cancer but systemic toxicity limits its use. As chimeric antigen receptor-T (CAR-T) cell-derived exosomes contain tumor-targeted CARs and cytotoxic granules (granzyme B and perforin), they are considered potential delivery vehicles for PTX. However, the low drug-loading capacity and hepatotropic properties of exosomes are obstacles to their application to extrahepatic cancer. Here, a hybrid nanovesicle named Lip-CExo@PTX was designed for immunochemotherapy of lung cancer by fusing exosomes derived from bispecific CAR-T cells targeting both mesothelin (MSLN) and programmed death ligand-1 (PD-L1) with lung-targeted liposomes. Due to the lung-targeting ability of the liposomes, over 95% of intravenously administered Lip-CExo@PTX accumulated in lung tissue. In addition, with the help of the anti-MSLN single-chain variable fragment (scFv), the PTX and cytotoxic granules inside Lip-CExo@PTX were further delivered into MSLN-positive tumors. Notably, the anti-PD-L1 scFv on Lip-CExo@PTX blocked PD-L1 on the tumors to avoid T cell exhaustion and promoted PTX-induced immunogenic cell death. Furthermore, Lip-CExo@PTX prolonged the survival time of tumor-bearing mice in a CT-26 metastatic lung cancer model. Therefore, Lip-CExo@PTX may deliver PTX to tumor cells through sequential targeted delivery and enhance the antitumor effects, providing a promising strategy for immunochemotherapy of lung cancer.
科研通智能强力驱动
Strongly Powered by AbleSci AI