A Hybrid Planning Method for 3D Autonomous Exploration in Unknown Environments With a UAV

计算机科学 运动规划 人工智能 遥控水下航行器 控制工程 机器人 系统工程 移动机器人 工程类
作者
Xuning Chen,Jianying Zheng,Qinglei Hu
出处
期刊:IEEE Transactions on Automation Science and Engineering [Institute of Electrical and Electronics Engineers]
卷期号:21 (4): 5713-5724 被引量:4
标识
DOI:10.1109/tase.2023.3316207
摘要

This article investigates the autonomous exploration problem of an unmanned aerial vehicle (UAV) in a fully unknown three-dimensional (3D) space, subject to the constraints of collision avoidance, energy-saving, and computation consumption. To tackle this problem, a hybrid planning algorithm named FSHP is proposed. The algorithm consists of a novel local planner designed to explore unknown space within the onboard camera's field of view (FoV) faster and less computationally. The local planner is a combination of the frontier-based and sampling-based methods, overcoming the bottlenecks of high computational time for the former and non-heuristics for the latter. Furthermore, the algorithm incorporates a global planner based on historical information to enhance performance in larger and more complex scenarios. The global planner includes a historical road map (HRM) using the rapidly-exploring random tree (RRT) and a historical tree (HST) based on the k-dimension (k-d) tree, built simultaneously. When no informative viewpoints are nearby, the planner replans trajectories globally to unexplored space. Finally, the proposed approach is evaluated in both simulations and real-world experiments, demonstrating the effectiveness and efficiency of the FSHP. Note to Practitioners —The motivation of this paper stems from the need to develop a fast and efficient autonomous exploration algorithm for a UAV for practical applications such as 3D reconstruction, search-and-rescue and military reconnaissance. Frontier-based and sampling-based methods are widely used to solve this problem due to their heuristics and low computational effort, respectively. However, either method can not meet the requirements related to exploration efficiency arising from increasingly complex and diverse tasks. To speed up the exploration process, reduce the exploration time and shorten the exploration path length, we propose this new method FSHP. It combines the advantages of global exploration (frontier-based methods) and local exploration (sampling-based methods) with random sampling in the frontiers. Furthermore, the replanning target selection and waypoints optimization schemes helps in reducing the path. Overall, this novel framework, FSHP, enables efficient and effective autonomous exploration tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
蓝灵发布了新的文献求助10
3秒前
ESCCD完成签到 ,获得积分10
3秒前
温暖寻琴发布了新的文献求助10
3秒前
4秒前
zho发布了新的文献求助10
4秒前
NINI完成签到,获得积分10
4秒前
weiwei完成签到,获得积分10
4秒前
科研爱好者完成签到 ,获得积分10
4秒前
5秒前
5秒前
小牛完成签到,获得积分10
6秒前
6秒前
科研通AI2S应助coco采纳,获得10
7秒前
啦啦啦发布了新的文献求助10
7秒前
8秒前
8秒前
酷波er应助顺利的冬瓜采纳,获得10
10秒前
可爱花生发布了新的文献求助10
10秒前
11秒前
11秒前
hg08完成签到 ,获得积分10
13秒前
32完成签到 ,获得积分10
13秒前
13秒前
小无发布了新的文献求助30
14秒前
墨斗鱼发布了新的文献求助30
14秒前
16秒前
16秒前
科研通AI5应助科研通管家采纳,获得10
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
传奇3应助科研通管家采纳,获得10
16秒前
diupapa应助科研通管家采纳,获得10
16秒前
Qiao应助科研通管家采纳,获得10
16秒前
Wangyicong应助科研通管家采纳,获得10
16秒前
无花果应助科研通管家采纳,获得10
16秒前
科研通AI5应助香菜公主采纳,获得10
16秒前
棕熊熊应助科研通管家采纳,获得10
16秒前
丘比特应助科研通管家采纳,获得10
16秒前
英俊的铭应助YWang采纳,获得10
16秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843521
求助须知:如何正确求助?哪些是违规求助? 3385800
关于积分的说明 10542559
捐赠科研通 3106645
什么是DOI,文献DOI怎么找? 1710972
邀请新用户注册赠送积分活动 823908
科研通“疑难数据库(出版商)”最低求助积分说明 774367