Improving the Data Quality of Untargeted Metabolomics through a Targeted Data-Dependent Acquisition Based on an Inclusion List of Differential and Preidentified Ions

代谢组学 化学 数据挖掘 数据采集 鉴定(生物学) 数据质量 计算生物学 计算机科学 色谱法 运营管理 植物 生物 操作系统 经济 公制(单位)
作者
Yuhao Zhang,Jingyu Liao,Wanqi Le,Gaosong Wu,Weidong Zhang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:95 (34): 12964-12973 被引量:9
标识
DOI:10.1021/acs.analchem.3c02888
摘要

Metabolomics based on high-resolution mass spectrometry has become a powerful technique in biomedical research. The development of various analytical tools and online libraries has promoted the identification of biomarkers. However, how to make mass spectrometry collect more data information is an important but underestimated research topic. Herein, we combined full-scan and data-dependent acquisition (DDA) modes to develop a new targeted DDA based on the inclusion list of differential and preidentified ions (dpDDA). In this workflow, the MS1 datasets for statistical analysis and metabolite preidentification were first obtained using full-scan, and then, the MS/MS datasets for metabolite identification were obtained using targeted DDA of quality control samples based on the inclusion list. Compared with the current methods (DDA, data-independent acquisition, targeted DDA with time-staggered precursor ion list, and iterative exclusion DDA), dpDDA showed better stability, higher characteristic ion coverage, higher differential metabolites' MS/MS coverage, and higher quality MS/MS spectra. Moreover, the same trend was verified in the analysis of large-scale clinical samples. More surprisingly, dpDDA can distinguish patients with different severities of coronary heart disease (CHD) based on the Canadian Cardiovascular Society angina classification, which we cannot distinguish through conventional metabolomics data collection. Finally, dpDDA was employed to differentiate CHD from healthy control, and targeted metabolomics confirmed that dpDDA could identify a more complete metabolic pathway network. At the same time, four unreported potential CHD biomarkers were identified, and the area under the receiver operating characteristic curve was greater than 0.85. These results showed that dpDDA would expand the discovery of biomarkers based on metabolomics, more comprehensively explore the key metabolites and their association with diseases, and promote the development of precision medicine.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
祁瓀完成签到,获得积分10
刚刚
老汤姆发布了新的文献求助10
刚刚
2秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
NiNi完成签到,获得积分10
5秒前
不安青牛发布了新的文献求助10
6秒前
CooperLI发布了新的文献求助10
6秒前
7秒前
9秒前
10秒前
双儿发布了新的文献求助20
10秒前
自由的诗桃完成签到,获得积分10
11秒前
你都至少信我八分吧完成签到 ,获得积分10
11秒前
如7而至发布了新的文献求助10
11秒前
13秒前
iOhyeye23发布了新的文献求助10
13秒前
tw007007完成签到,获得积分10
13秒前
curtainai完成签到,获得积分10
14秒前
安静雅阳完成签到,获得积分10
14秒前
14秒前
动听的弼完成签到 ,获得积分10
15秒前
16秒前
Laity发布了新的文献求助80
17秒前
pebble完成签到,获得积分10
17秒前
18秒前
wql完成签到,获得积分10
18秒前
知来者完成签到,获得积分10
19秒前
19秒前
潇湘雪月完成签到,获得积分10
19秒前
辰月贰拾完成签到,获得积分10
20秒前
传奇3应助萤火虫采纳,获得30
21秒前
量子星尘发布了新的文献求助10
22秒前
研友_n0DWDn完成签到,获得积分10
23秒前
永不退缩发布了新的文献求助10
24秒前
尉迟明风完成签到 ,获得积分10
24秒前
瑞仔完成签到,获得积分10
25秒前
26秒前
yyygc完成签到,获得积分10
28秒前
乐观小之发布了新的文献求助10
29秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Plutonium Handbook 4000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Building Quantum Computers 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 900
Principles of Plasma Discharges and Materials Processing,3rd Edition 500
Atlas of Quartz Sand Surface Textures 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4211894
求助须知:如何正确求助?哪些是违规求助? 3746037
关于积分的说明 11787151
捐赠科研通 3414021
什么是DOI,文献DOI怎么找? 1873448
邀请新用户注册赠送积分活动 927878
科研通“疑难数据库(出版商)”最低求助积分说明 837287