Developing a Personalized E-Learning and MOOC Recommender System in IoT-Enabled Smart Education

计算机科学 推荐系统 机器学习 协同过滤 人工智能 随机森林 杠杆(统计) 决策树 水准点(测量) 大地测量学 地理
作者
Samina Amin,M. Irfan Uddin,Wali Khan Mashwani,Ala Abdulsalam Alarood,Abdulrahman Alzahrani,Ahmed Alzahrani
出处
期刊:IEEE Access [Institute of Electrical and Electronics Engineers]
卷期号:11: 136437-136455 被引量:7
标识
DOI:10.1109/access.2023.3336676
摘要

Smart strategies and intelligent technologies are enabling the designing of a smart learning environment that successfully supports the development of personalized learning and adaptive learning. This trend towards integration is in line with the growing prevalence of Internet of Things (IoT)-enabled smart education systems, which can leverage Machine Learning (ML) techniques to provide Personalized Course Recommendations (PCR) to students. Furthermore, the existing recommendation techniques are based on either explicit or implicit feedback and fail to capture the changes in learners' preferences while integrating implicit or explicit feedback. To this end, this paper proposes a new model for personalized learning and PCR that is enabled by a smart E-Learning (EL) platform. The model aims to gather data on students' academic performance, interests, and learning preferences and utilize this data to recommend the courses that will be most beneficial to each student. The proposed approach makes suggestions based on the learner's interactions with the system and the cosine similarity in related contents by combining explicit (user ratings) and implicit (views and behavior) methodologies. The suggested method makes use of ML algorithms and an EL Recommender System (RecSys) based on Collaborative Filtering (CF).This includes Random Forest Regressor (RFR), Decision Tree Regressor (DTR), K-Nearest Neighbors (KNN), Singular Value Decomposition (SVD), eXtreme Gradient Boosting Regressor (XGBR), and Linear Regression (LR). The proposed solution is benchmarked against existing approaches on both predictive accuracy and running time. Experimental results are conducted based on two benchmark datasets (Coursera and Udemy). The proposed model outperforms existing top-K recommendations techniques in terms of accuracy metrics such as precision@k, Mean Average Precision (MAP)@k, recall@k, Normalized Discounted Cumulative Gain (NDCG)@k, Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Mean Absolute Error (MAE) for PCR. From the experiments, it can be shown that SVD can perform well in terms of higher accuracy and MAP and NDCG and lower MAE, RMSE, and MSE values when contrasted to other proposed algorithms because it is better suited to capture complex student-course interactions. The proposed solutions are promising on two different datasets and can be applied to various RecSys domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
灵灵发布了新的文献求助10
刚刚
Dskelf完成签到,获得积分10
1秒前
星川发布了新的文献求助10
2秒前
Akim应助找文献采纳,获得10
2秒前
英格雷西发布了新的文献求助10
4秒前
石大留下了新的社区评论
4秒前
4秒前
Xinyu应助张若旸采纳,获得10
5秒前
谨慎紫霜发布了新的文献求助10
6秒前
科研通AI5应助我爱学习呢采纳,获得10
7秒前
赵赵1203发布了新的文献求助10
8秒前
baishui完成签到,获得积分20
9秒前
谢书繁发布了新的文献求助10
9秒前
万能图书馆应助萧然采纳,获得10
10秒前
书临完成签到 ,获得积分10
12秒前
CodeCraft应助苏苏苏采纳,获得10
12秒前
13秒前
yu完成签到,获得积分10
13秒前
我爱学习呢完成签到,获得积分10
13秒前
16秒前
yu发布了新的文献求助10
16秒前
17秒前
爆米花应助ssr010902采纳,获得10
18秒前
18秒前
上官若男应助奶糖喵采纳,获得10
19秒前
阿菜完成签到,获得积分10
19秒前
852应助zhu采纳,获得30
20秒前
思源应助东东东采纳,获得10
21秒前
赵赵1203完成签到,获得积分10
22秒前
飞宇发布了新的文献求助10
22秒前
22秒前
22秒前
科研发布了新的文献求助10
23秒前
23秒前
苏苏苏发布了新的文献求助10
24秒前
J曌Chen完成签到,获得积分10
24秒前
传奇3应助谢书繁采纳,获得10
24秒前
24秒前
24秒前
汉堡包应助余白薇采纳,获得30
25秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Handbook of Experimental Social Psychology 500
The Martian climate revisited: atmosphere and environment of a desert planet 500
建国初期十七年翻译活动的实证研究. 建国初期十七年翻译活动的实证研究 400
Transnational East Asian Studies 400
Towards a spatial history of contemporary art in China 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3846630
求助须知:如何正确求助?哪些是违规求助? 3389172
关于积分的说明 10555993
捐赠科研通 3109532
什么是DOI,文献DOI怎么找? 1713799
邀请新用户注册赠送积分活动 824915
科研通“疑难数据库(出版商)”最低求助积分说明 775135