MGCN-PolyA: An Integrated Computational Framework for Predicting Poly(A) Signals with Multiscale-gated Convolutional Networks

计算机科学 卷积神经网络 人工智能
作者
Jujuan Zhuang,Wanquan Gao,Xinru Huang,Guoyan Chen
出处
期刊:Current Bioinformatics [Bentham Science Publishers]
卷期号:20
标识
DOI:10.2174/0115748936289520240828050951
摘要

Background: The accurate recognition of the polyadenylation signal (PAS) from DNA sequences is essential for understanding gene transcriptional regulation. A variety of machine learning-based computational methods have been developed to predict PAS in recent years; however, their performance and their generalization ability are unsatisfactory. It is highly desirable to design more preferable computational approaches for PAS prediction. Methods: In this work, we developed an integrated framework MGCN-PolyA for PAS prediction across four species, including Homo sapiens, Bos taurus, Mus musculus, and Drosophila melanogaster. MGCN-Poly(A) benefits from the diversity of feature engineering and the effectiveness of the model architecture. We combined features from different perspectives, such as word embedding, One-hot encoding, K-mer frequency, and Enhanced Nucleic Acid Composition (ENAC), which complement each other and provide rich and comprehensive information for model learning. In model architecture, MGCN-Poly(A) leverages a two-channel multi-scale gated convolutional network to effectively learn high-level feature representations at different scales, and then combines the statistical features to predict PAS using random forest algorithm. These designs not only speed up network training, but also improves the generalization ability Results: The benchmarking experiments on the independent test datasets demonstrate that MGCNPolyA outperforms other state-of-the-art algorithms in identifying PAS. MGCN-PolyA has the highest accuracy on all test datasets, and its excellent performance on cross-species validation also demonstrates the robustness of our model. Conclusion: Extracting features from different perspectives is important for PAS recognition, and the integration of DNNs and shallow machine learning algorithms can improve the model performance.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
苏卿应助研友_n2QXPL采纳,获得80
1秒前
Mary发布了新的文献求助10
2秒前
orixero应助Yang采纳,获得10
2秒前
hcj发布了新的文献求助10
2秒前
科研通AI2S应助小小采纳,获得10
2秒前
小五完成签到 ,获得积分10
2秒前
zzzzzxh发布了新的文献求助10
3秒前
5秒前
5秒前
兮兮发布了新的文献求助20
6秒前
xtt完成签到,获得积分20
7秒前
7秒前
善良曲奇发布了新的文献求助10
9秒前
wanci应助GYYYYYYYYYYY采纳,获得10
10秒前
11秒前
jason发布了新的文献求助10
11秒前
我很懵逼发布了新的文献求助10
12秒前
漂亮夜安完成签到,获得积分20
12秒前
SYF完成签到,获得积分10
13秒前
猫小咪完成签到,获得积分10
13秒前
13秒前
加菲丰丰应助fyy采纳,获得30
13秒前
嗯啊完成签到,获得积分10
13秒前
isatis完成签到,获得积分10
13秒前
15秒前
15秒前
孟孟完成签到,获得积分10
16秒前
Fiver应助张磊采纳,获得20
17秒前
在水一方应助hcj采纳,获得10
17秒前
菠萝吹雪完成签到,获得积分20
18秒前
YW发布了新的文献求助10
18秒前
18秒前
20秒前
20秒前
加菲丰丰应助刘浩轩采纳,获得10
21秒前
21秒前
小蚂蚁发布了新的文献求助10
21秒前
lgy完成签到,获得积分10
21秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785970
求助须知:如何正确求助?哪些是违规求助? 3331421
关于积分的说明 10251186
捐赠科研通 3046849
什么是DOI,文献DOI怎么找? 1672227
邀请新用户注册赠送积分活动 801155
科研通“疑难数据库(出版商)”最低求助积分说明 759994