A Graph-Based Time-Frequency Two-Stream Network for Multistep Prediction of Key Performance Indicators in Industrial Processes

钥匙(锁) 计算机科学 图形 冗余(工程) 过程(计算) 数据挖掘 机器学习 依赖关系(UML) 人工智能 特征(语言学) 理论计算机科学 计算机安全 语言学 哲学 操作系统
作者
Yan Feng,Xinmin Zhang,Chunjie Yang
出处
期刊:IEEE transactions on cybernetics [Institute of Electrical and Electronics Engineers]
卷期号:54 (11): 6867-6880 被引量:5
标识
DOI:10.1109/tcyb.2024.3447108
摘要

Deep learning-based soft sensor modeling methods have been extensively studied and applied to industrial processes in the last decade. However, existing soft sensor models mainly focus on the current step prediction in real time and ignore the multistep prediction in advance. In actual industrial applications, compared to the current step prediction, it is more useful for on-site workers to predict some key performance indicators in advance. Nowadays, multistep prediction task still suffers from two key issues: 1) complex coupling relationships between process variables and 2) long-term dependency learning. To ravel out these two problems, in this article, we propose a graph-based time-frequency two-stream network to achieve multistep prediction. Specifically, a multigraph attention layer is proposed to model the dynamical coupling relationships between process variables from the graph perspective. Then, in the time-frequency two-stream network, multi-GAT is used to extract time-domain features and frequency-domain features for long-term dependency, respectively. Furthermore, we propose a feature fusion module to combine these two kinds of features based on the minimum redundancy and maximum correlation learning paradigm. Finally, extensive experiments on two real-world industrial datasets show that the proposed multistep prediction model outperforms the state-of-the-art models. In particular, compared to the existing SOTA method, the proposed method has achieved 12.40%, 22.49%, and 21.98% improvement in RMSE, MAE, and MAPE on the three-step prediction task using waste incineration dataset.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
华仔应助Jiaox采纳,获得10
1秒前
烛夜黎完成签到,获得积分10
3秒前
Marshall发布了新的文献求助10
3秒前
闹闹加油发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助50
4秒前
4秒前
怕黑蜜蜂发布了新的文献求助10
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
端庄冬日完成签到,获得积分10
8秒前
8秒前
8秒前
笨笨火龙果完成签到,获得积分10
8秒前
9秒前
9秒前
10秒前
scinewbee发布了新的文献求助10
10秒前
栖栖发布了新的文献求助10
10秒前
阿基米德发布了新的文献求助10
11秒前
12秒前
pure完成签到 ,获得积分10
12秒前
ranran完成签到,获得积分10
13秒前
英吉利25发布了新的文献求助10
13秒前
端庄冬日发布了新的文献求助10
14秒前
科研通AI6.1应助简单项链采纳,获得10
16秒前
16秒前
无花果应助科研通管家采纳,获得10
17秒前
无花果应助科研通管家采纳,获得10
17秒前
17秒前
量子星尘发布了新的文献求助10
17秒前
Ava应助科研通管家采纳,获得10
17秒前
Ava应助科研通管家采纳,获得10
17秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
今后应助SOESAN采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
18秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5786859
求助须知:如何正确求助?哪些是违规求助? 5696278
关于积分的说明 15470826
捐赠科研通 4915556
什么是DOI,文献DOI怎么找? 2645833
邀请新用户注册赠送积分活动 1593523
关于科研通互助平台的介绍 1547863