医学
惯习
协议(科学)
计算机断层摄影术
碘
医学物理学
核医学
对偶(语法数字)
放射科
病理
艺术
材料科学
替代医学
文学类
考古
民族志
冶金
历史
作者
Leening P. Liu,Rizza Pua,Michael Dieckmeyer,Nadav Shapira,Pooyan Sahbaee,Grace J. Gang,Harold Litt,Peter B. Noël
标识
DOI:10.1117/1.jmi.11.s1.s12806
摘要
PurposeEvaluation of iodine quantification accuracy with varying iterative reconstruction level, patient habitus, and acquisition mode on a first-generation dual-source photon-counting computed tomography (PCCT) system.ApproachA multi-energy CT phantom with and without its extension ring equipped with various iodine inserts (0.2 to 15.0 mg/ml) was scanned over a range of radiation dose levels (CTDIvol 0.5 to 15.0 mGy) using two tube voltages (120, 140 kVp) and two different source modes (single-, dual-source). To assess the agreement between nominal and measured iodine concentrations, iodine density maps at different iterative reconstruction levels were utilized to calculate root mean square error (RMSE) and generate Bland–Altman plots by grouping radiation dose levels (ultra-low: <1.5; low: 1.5 to 5; medium: 5 to 15 mGy) and iodine concentrations (low: <5; high: 5 to 15 mg/mL).ResultsOverall, quantification of iodine concentrations was accurate and reliable even at ultra-low radiation dose levels. RMSE ranged from 0.25 to 0.37, 0.20 to 0.38, and 0.25 to 0.37 mg/ml for ultra-low, low, and medium radiation dose levels, respectively. Similarly, RMSE was stable at 0.31, 0.28, 0.33, and 0.30 mg/ml for tube voltage and source mode combinations. Ultimately, the accuracy of iodine quantification was higher for the phantom without an extension ring (RMSE 0.21 mg/mL) and did not vary across different levels of iterative reconstruction.ConclusionsThe first-generation PCCT allows for accurate iodine quantification over a wide range of iodine concentrations and radiation dose levels. Stable accuracy across iterative reconstruction levels may allow further radiation exposure reductions without affecting quantitative results.
科研通智能强力驱动
Strongly Powered by AbleSci AI