Activating ZnV2O4by an Electrochemical Oxidation Strategy for Enhanced Energy Storage in Zinc-Ion Batteries

电化学 X射线光电子能谱 阴极 尖晶石 化学工程 拉曼光谱 材料科学 溶解 扫描电子显微镜 容量损失 电极 化学 冶金 物理化学 复合材料 工程类 物理 光学
作者
Tzu−Ho Wu,Kung-Yi Ni,Bo‐Tau Liu,Shih-Han Wang
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:5 (8): 10196-10206 被引量:16
标识
DOI:10.1021/acsaem.2c01931
摘要

Rechargeable aqueous zinc-ion batteries (RAZIBs) are recognized as promising energy storage systems to meet the ever-growing demand for grid-scale applications. Developing reliable cathode materials with superior electrochemical performance plays a decisive role in this field. In this work, an electrochemical oxidation strategy is employed to successfully activate the electrochemical activity of ZnV2O4 spinel oxide. Operating at high potentials up to 2.0 V enables the capacity activation process efficiently, in which the specific capacity increases from 86 to 232 mAh g–1 (corresponding to 170% capacity enhancement) after 50 cycles at 2 A g–1. On the contrary, ZnV2O4 operating in the potential window of 0.4–1.6 V only delivers 87 mAh g–1 after 50 cycles, whereas negligible capacity (<3 mAh g–1) is obtained in the case of 0.4–1.3 V. As characterized by X-ray diffraction (XRD), Raman microscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and in situ pH measurements, the underlying mechanism is unraveled as a hydrolysis reaction coupled with the dissolution–recrystallization process, leading to the formation of high-valent Zn0.06V2O5·1.07H2O with a localized layered structure. The activated cathode demonstrates facilitated ion transport kinetics, reduced charge transfer resistance, and high electrochemical reversibility in RAZIBs. Benefiting from these features, stable cycle stability is achieved, that is, a reversible capacity of 138 mAh g–1 (83% capacity retention) can be retained after 2000 cycles at 4 A g–1. This work sheds light on activating low-valent vanadium-based oxides for practical application in RAZIBs, opening an avenue for developing cathode materials for aqueous batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
留胡子的短靴完成签到 ,获得积分10
刚刚
sun完成签到,获得积分10
1秒前
菲8521发布了新的文献求助10
1秒前
1秒前
哎嘤斯坦完成签到,获得积分10
1秒前
yy发布了新的文献求助10
1秒前
Lotus完成签到 ,获得积分10
1秒前
搜集达人应助馨lover采纳,获得10
2秒前
impending完成签到,获得积分10
4秒前
米饭多加水完成签到 ,获得积分10
4秒前
李小鑫吖完成签到,获得积分10
5秒前
5秒前
00完成签到 ,获得积分10
6秒前
猪猪hero发布了新的文献求助10
6秒前
6秒前
Jim完成签到,获得积分10
6秒前
菲8521完成签到,获得积分10
7秒前
正直的语蝶完成签到,获得积分10
8秒前
小苗儿完成签到,获得积分10
10秒前
ok关注了科研通微信公众号
11秒前
可爱的函函应助活力以冬采纳,获得10
12秒前
干净的芮完成签到,获得积分10
12秒前
Orange应助浮名半生采纳,获得10
13秒前
13秒前
小王完成签到,获得积分10
14秒前
huxuehong完成签到 ,获得积分10
15秒前
爆米花应助糊涂的丹南采纳,获得10
15秒前
我是老大应助Frichare采纳,获得10
15秒前
慕青应助诗亭采纳,获得10
16秒前
老花眼莫莫完成签到,获得积分10
16秒前
丘比特应助yggggg采纳,获得30
17秒前
durance完成签到,获得积分10
17秒前
17秒前
我爱读文献完成签到,获得积分10
17秒前
wxliao1234发布了新的文献求助10
18秒前
LLL完成签到,获得积分10
19秒前
檸123456完成签到,获得积分10
19秒前
哈哈哈哈完成签到,获得积分10
21秒前
111完成签到,获得积分10
21秒前
yangjoy发布了新的文献求助10
22秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843521
求助须知:如何正确求助?哪些是违规求助? 3385767
关于积分的说明 10542330
捐赠科研通 3106630
什么是DOI,文献DOI怎么找? 1710971
邀请新用户注册赠送积分活动 823898
科研通“疑难数据库(出版商)”最低求助积分说明 774367