Activating ZnV2O4by an Electrochemical Oxidation Strategy for Enhanced Energy Storage in Zinc-Ion Batteries

电化学 X射线光电子能谱 阴极 尖晶石 化学工程 拉曼光谱 材料科学 溶解 扫描电子显微镜 容量损失 电极 化学 冶金 物理化学 复合材料 工程类 物理 光学
作者
Tzu−Ho Wu,Kung-Yi Ni,Bo‐Tau Liu,Shih-Han Wang
出处
期刊:ACS applied energy materials [American Chemical Society]
卷期号:5 (8): 10196-10206 被引量:28
标识
DOI:10.1021/acsaem.2c01931
摘要

Rechargeable aqueous zinc-ion batteries (RAZIBs) are recognized as promising energy storage systems to meet the ever-growing demand for grid-scale applications. Developing reliable cathode materials with superior electrochemical performance plays a decisive role in this field. In this work, an electrochemical oxidation strategy is employed to successfully activate the electrochemical activity of ZnV2O4 spinel oxide. Operating at high potentials up to 2.0 V enables the capacity activation process efficiently, in which the specific capacity increases from 86 to 232 mAh g–1 (corresponding to 170% capacity enhancement) after 50 cycles at 2 A g–1. On the contrary, ZnV2O4 operating in the potential window of 0.4–1.6 V only delivers 87 mAh g–1 after 50 cycles, whereas negligible capacity (<3 mAh g–1) is obtained in the case of 0.4–1.3 V. As characterized by X-ray diffraction (XRD), Raman microscopy, X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and in situ pH measurements, the underlying mechanism is unraveled as a hydrolysis reaction coupled with the dissolution–recrystallization process, leading to the formation of high-valent Zn0.06V2O5·1.07H2O with a localized layered structure. The activated cathode demonstrates facilitated ion transport kinetics, reduced charge transfer resistance, and high electrochemical reversibility in RAZIBs. Benefiting from these features, stable cycle stability is achieved, that is, a reversible capacity of 138 mAh g–1 (83% capacity retention) can be retained after 2000 cycles at 4 A g–1. This work sheds light on activating low-valent vanadium-based oxides for practical application in RAZIBs, opening an avenue for developing cathode materials for aqueous batteries.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
ZZG应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
flame应助科研通管家采纳,获得10
1秒前
1秒前
wanci应助科研通管家采纳,获得10
1秒前
风清扬发布了新的文献求助10
1秒前
小二郎应助科研通管家采纳,获得10
1秒前
量子星尘发布了新的文献求助10
2秒前
3秒前
CLN完成签到,获得积分10
3秒前
ganhykk完成签到,获得积分10
4秒前
4秒前
隐形曼青应助长情奇异果采纳,获得10
5秒前
5秒前
自莲珊完成签到,获得积分10
6秒前
萍萍完成签到 ,获得积分10
6秒前
7秒前
7秒前
8秒前
YZZ发布了新的文献求助10
8秒前
8秒前
YU完成签到,获得积分10
9秒前
萧湘完成签到,获得积分10
9秒前
10秒前
大盏发布了新的文献求助10
10秒前
田様应助洋洋采纳,获得10
10秒前
zdy发布了新的文献求助30
11秒前
yh_milky发布了新的文献求助10
12秒前
12秒前
徐英杰发布了新的文献求助10
13秒前
jk发布了新的文献求助10
13秒前
13秒前
maaicui完成签到,获得积分10
13秒前
14秒前
青苗泡完成签到,获得积分10
14秒前
chenfaju发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783495
求助须知:如何正确求助?哪些是违规求助? 5677079
关于积分的说明 15461157
捐赠科研通 4912978
什么是DOI,文献DOI怎么找? 2644435
邀请新用户注册赠送积分活动 1592217
关于科研通互助平台的介绍 1546850