Improving the identification accuracy of sugar orange suffering from granulation through diameter correction and stepwise variable selection

特征选择 偏最小二乘回归 统计 数学 线性判别分析 模式识别(心理学) 均方误差 人工智能 化学 计算机科学
作者
Yong‐Ping Zheng,Shijie Tian,Lin Xie
出处
期刊:Postharvest Biology and Technology [Elsevier BV]
卷期号:200: 112313-112313 被引量:5
标识
DOI:10.1016/j.postharvbio.2023.112313
摘要

Granulation is one of the main diseases for citrus fruit, causing the loss of water and nutrients. To prevent citrus with granulation from flowing into the market, it is essential to identify them. In this study, sugar oranges suffering from granulation were detected online using visible/near-infrared (Vis/NIR) spectroscopy technology. Diameter correction and stepwise variable selection were optimized to improve the identification accuracy. To eliminate or weaken the effect of different sample sizes on the Vis/NIR transmission spectrum which leads to the decline of accuracy, the average extinction coefficient inside the fruit was calculated to correct the transmittance spectra of different sizes of citrus, and the effective variables of the spectrum were selected stepwise using variable importance of projection (VIP), selectivity ratio (SR) and competitive adaptive reweighted sampling (CARS). Four different pretreatment methods (standard normal variate (SNV), multiplicative scatter correction (MSC), mean center, 1st derivative) were used to process the spectra before and after correction, and two modeling methods (partial least squares discriminant analysis (PLSDA) and support vector machine (SVM)) were combined to develop the identification model. The results showed that the recognition accuracy of the models built from the corrected spectra was generally better than that of the uncorrected ones. The SNV-Mean Center-CARS-PLSDA model was optimal, with a discrimination accuracy of 94.00 % and an average discrimination error rate of 5.84 % for healthy and diseased samples. This study demonstrates that the proposed fruit diameter correction method combined with effective variable preference can effectively improve the discrimination accuracy of citrus granulation online, which is important for improving fruit quality and protecting consumers' interests.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
时倾完成签到,获得积分10
3秒前
毛毛完成签到,获得积分20
4秒前
CipherSage应助点点采纳,获得10
4秒前
Nicole完成签到 ,获得积分10
4秒前
留胡子的火完成签到,获得积分10
4秒前
5秒前
tianquanbi完成签到,获得积分10
6秒前
博修发布了新的文献求助10
9秒前
动听的囧完成签到,获得积分10
13秒前
共享精神应助白兰鸽采纳,获得10
13秒前
狮子卷卷完成签到,获得积分10
13秒前
852应助科研通管家采纳,获得10
14秒前
科研通AI5应助科研通管家采纳,获得10
14秒前
爆米花应助科研通管家采纳,获得10
14秒前
cdercder应助科研通管家采纳,获得10
14秒前
15秒前
充电宝应助科研通管家采纳,获得10
15秒前
大模型应助科研通管家采纳,获得10
15秒前
15秒前
15秒前
15秒前
111完成签到,获得积分10
20秒前
20秒前
深情安青应助白兰鸽采纳,获得10
21秒前
小二郎应助博修采纳,获得10
21秒前
酷炫抽屉完成签到 ,获得积分10
23秒前
victhr完成签到,获得积分10
25秒前
26秒前
27秒前
小许会更好完成签到,获得积分10
30秒前
30秒前
小马甲应助han采纳,获得10
30秒前
小汪完成签到,获得积分10
31秒前
星辰大海应助白兰鸽采纳,获得10
33秒前
fan发布了新的文献求助10
36秒前
科目三应助ComeOn采纳,获得10
37秒前
科研通AI5应助羽羽采纳,获得10
37秒前
38秒前
Xxxxzzz完成签到,获得积分10
39秒前
han完成签到,获得积分10
39秒前
高分求助中
Basic Discrete Mathematics 1000
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
The Healthy Socialist Life in Maoist China, 1949–1980 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3799078
求助须知:如何正确求助?哪些是违规求助? 3344805
关于积分的说明 10321507
捐赠科研通 3061233
什么是DOI,文献DOI怎么找? 1680100
邀请新用户注册赠送积分活动 806899
科研通“疑难数据库(出版商)”最低求助积分说明 763445