Multiomic machine learning on lactylation for molecular typing and prognosis of lung adenocarcinoma

腺癌 打字 计算机科学 计算生物学 人工智能 医学 生物 内科学 语音识别 癌症
作者
Mengmeng Hua,Tao Li
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:15 (1)
标识
DOI:10.1038/s41598-025-87419-4
摘要

To integrate machine learning and multiomic data on lactylation-related genes (LRGs) for molecular typing and prognosis prediction in lung adenocarcinoma (LUAD). LRG mRNA and long non-coding RNA transcriptomes, epigenetic methylation data, and somatic mutation data from The Cancer Genome Atlas LUAD cohort were analyzed to identify lactylation cancer subtypes (CSs) using 10 multiomics ensemble clustering techniques. The findings were then validated using the GSE31210 and GSE13213 LUAD cohorts. A prognosis model for LUAD was developed using the identified hub LRGs to divide patients into high- and low-risk groups. The effectiveness of this model was validated. We identified two lactylation CSs, which were validated in the GSE31210 and GSE13213 LUAD cohorts. Nine hub LRGs, namely HNRNPC, PPIA, BZW1, GAPDH, H2AFZ, RAN, KIF2C, RACGAP1, and WBP11, were used to construct the prognosis model. In the subsequent prognosis validation, the high-risk group included more patients with stage T3 + 4, N1 + 2 + 3, M1, and III + IV cancer; higher recurrence/metastasis rates; and lower 1, 3, and 5 year overall survival rates. In the oncogenic pathway analysis, most of the oncogenic mutations were detected in the high-risk group. The tumor microenvironment analysis illustrated that immune activity was notably elevated in low-risk patients, indicating they might more strongly respond to immunotherapy than high-risk patients. Further, oncoPredict analysis revealed that low-risk patients have increased sensitivity to chemotherapeutics. Overall, we developed a model that combines multiomic analysis and machine learning for LUAD prognosis. Our findings represent a valuable reference for further understanding the important function of lactylation modification pathways in LUAD progression.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
2秒前
穆仰发布了新的文献求助10
3秒前
时光发布了新的文献求助10
6秒前
6秒前
飞鸟发布了新的文献求助10
6秒前
1234发布了新的文献求助10
8秒前
SYLH应助garyaa采纳,获得10
9秒前
慕青应助严三笑采纳,获得10
9秒前
吴子冰发布了新的文献求助10
11秒前
11秒前
泡泡糖发布了新的文献求助10
11秒前
糊涂的访烟完成签到,获得积分10
12秒前
赘婿应助12采纳,获得10
12秒前
穆仰完成签到,获得积分10
13秒前
Iris发布了新的文献求助10
14秒前
Damy完成签到,获得积分10
16秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
max完成签到,获得积分10
18秒前
摇晃的红酒杯应助青苹果采纳,获得30
19秒前
kwl完成签到,获得积分10
20秒前
smile完成签到,获得积分10
20秒前
孝顺的冥王星完成签到,获得积分10
21秒前
21秒前
所所应助lzy采纳,获得10
22秒前
Guai完成签到 ,获得积分10
23秒前
23秒前
24秒前
深情安青应助吴子冰采纳,获得10
24秒前
HEIKU应助1234采纳,获得10
25秒前
manfullmoon完成签到,获得积分10
28秒前
28秒前
29秒前
guanze发布了新的文献求助10
30秒前
JamesPei应助快乐的英姑采纳,获得10
31秒前
安东完成签到 ,获得积分20
31秒前
Jouleken完成签到,获得积分10
32秒前
高分求助中
【提示信息,请勿应助】请使用合适的网盘上传文件 10000
The Oxford Encyclopedia of the History of Modern Psychology 1500
Green Star Japan: Esperanto and the International Language Question, 1880–1945 800
Sentimental Republic: Chinese Intellectuals and the Maoist Past 800
The Martian climate revisited: atmosphere and environment of a desert planet 800
Parametric Random Vibration 800
Building Quantum Computers 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3864197
求助须知:如何正确求助?哪些是违规求助? 3406469
关于积分的说明 10650161
捐赠科研通 3130470
什么是DOI,文献DOI怎么找? 1726408
邀请新用户注册赠送积分活动 831730
科研通“疑难数据库(出版商)”最低求助积分说明 779992