UniMatch V2: Pushing the Limit of Semi-Supervised Semantic Segmentation

人工智能 计算机科学 分割 图像分割 极限(数学) 模式识别(心理学) 计算机视觉 数学 数学分析
作者
Lanlan Yang,Zhen Zhao,Hengshuang Zhao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:: 1-18 被引量:11
标识
DOI:10.1109/tpami.2025.3528453
摘要

Semi-supervised semantic segmentation (SSS) aims at learning rich visual knowledge from cheap unlabeled images to enhance semantic segmentation capability. Among recent works, UniMatch [1] improves its precedents tremendously by amplifying the practice of weak-to-strong consistency regularization. Subsequent works typically follow similar pipelines and propose various delicate designs. Despite the achieved progress, strangely, even in this flourishing era of numerous powerful vision models, almost all SSS works are still sticking to 1) using outdated ResNet encoders with small-scale ImageNet-1K pre-training, and 2) evaluation on simple Pascal and Cityscapes datasets. In this work, we argue that, it is necessary to switch the baseline of SSS from ResNet-based encoders to more capable ViT-based encoders (e.g., DINOv2) that are pre-trained on massive data. A simple update on the encoder (even using 2× fewer parameters) can bring more significant improvement than careful method designs. Built on this competitive baseline, we present our upgraded and simplified UniMatch V2, inheriting the core spirit of weak-to-strong consistency from V1, but requiring less training cost and providing consistently better results. Additionally, witnessing the gradually saturated performance on Pascal and Cityscapes, we appeal that we should focus on more challenging benchmarks with complex taxonomy, such as ADE20K and COCO datasets. Code, models, and logs of all reported values, are available at https://github.com/LiheYoung/UniMatch-V2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
666666发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
3秒前
九城发布了新的文献求助10
4秒前
yangyang2021发布了新的文献求助10
4秒前
所所应助陈忠正采纳,获得10
5秒前
6秒前
acd关闭了acd文献求助
6秒前
6秒前
6秒前
威武爆米花完成签到,获得积分10
6秒前
fff完成签到,获得积分10
6秒前
刘才华发布了新的文献求助10
7秒前
SciGPT应助快来和姐妹玩采纳,获得10
7秒前
的风格发布了新的文献求助10
7秒前
头号玩家发布了新的文献求助10
7秒前
AVA发布了新的文献求助10
8秒前
8秒前
8秒前
干鞅发布了新的文献求助10
8秒前
干鞅发布了新的文献求助10
8秒前
优秀丹南发布了新的文献求助10
9秒前
Owen应助温柔梦松采纳,获得10
9秒前
不冬眠完成签到,获得积分20
10秒前
10秒前
英姑应助ChenChen采纳,获得10
10秒前
小雨完成签到 ,获得积分10
10秒前
NoMi完成签到,获得积分10
10秒前
10秒前
汉堡包应助王嘉尔采纳,获得10
11秒前
填空发布了新的文献求助10
11秒前
华仔应助会飞的小猪采纳,获得10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1400
Specialist Periodical Reports - Organometallic Chemistry Organometallic Chemistry: Volume 46 1000
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5513178
求助须知:如何正确求助?哪些是违规求助? 4607547
关于积分的说明 14505663
捐赠科研通 4543090
什么是DOI,文献DOI怎么找? 2489360
邀请新用户注册赠送积分活动 1471340
关于科研通互助平台的介绍 1443362