UniMatch V2: Pushing the Limit of Semi-Supervised Semantic Segmentation

人工智能 计算机科学 分割 图像分割 极限(数学) 模式识别(心理学) 计算机视觉 数学 数学分析
作者
Lanlan Yang,Zhen Zhao,Hengshuang Zhao
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:: 1-18 被引量:7
标识
DOI:10.1109/tpami.2025.3528453
摘要

Semi-supervised semantic segmentation (SSS) aims at learning rich visual knowledge from cheap unlabeled images to enhance semantic segmentation capability. Among recent works, UniMatch [1] improves its precedents tremendously by amplifying the practice of weak-to-strong consistency regularization. Subsequent works typically follow similar pipelines and propose various delicate designs. Despite the achieved progress, strangely, even in this flourishing era of numerous powerful vision models, almost all SSS works are still sticking to 1) using outdated ResNet encoders with small-scale ImageNet-1K pre-training, and 2) evaluation on simple Pascal and Cityscapes datasets. In this work, we argue that, it is necessary to switch the baseline of SSS from ResNet-based encoders to more capable ViT-based encoders (e.g., DINOv2) that are pre-trained on massive data. A simple update on the encoder (even using 2× fewer parameters) can bring more significant improvement than careful method designs. Built on this competitive baseline, we present our upgraded and simplified UniMatch V2, inheriting the core spirit of weak-to-strong consistency from V1, but requiring less training cost and providing consistently better results. Additionally, witnessing the gradually saturated performance on Pascal and Cityscapes, we appeal that we should focus on more challenging benchmarks with complex taxonomy, such as ADE20K and COCO datasets. Code, models, and logs of all reported values, are available at https://github.com/LiheYoung/UniMatch-V2.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HuiHui完成签到,获得积分10
2秒前
2秒前
kk发布了新的文献求助10
3秒前
小明发布了新的文献求助10
3秒前
5秒前
天天快乐应助欣喜的涵柏采纳,获得10
5秒前
中国任完成签到 ,获得积分10
6秒前
fff发布了新的文献求助10
6秒前
曲幻梅完成签到,获得积分20
7秒前
7秒前
7秒前
8秒前
执着幻桃完成签到,获得积分10
8秒前
8秒前
a1262570785发布了新的文献求助10
9秒前
9秒前
9秒前
香蕉觅云应助llb采纳,获得10
11秒前
叶楠发布了新的文献求助200
11秒前
蛋挞发布了新的文献求助10
11秒前
晓风残月完成签到 ,获得积分10
11秒前
贾假佳佳发布了新的文献求助10
12秒前
12秒前
自然的翠容完成签到,获得积分10
13秒前
量子星尘发布了新的文献求助150
13秒前
pangpang发布了新的文献求助10
13秒前
14秒前
14秒前
李爱国应助小麦果汁采纳,获得30
14秒前
铃兰发布了新的文献求助30
14秒前
情怀应助zjr采纳,获得10
16秒前
wuqi发布了新的文献求助20
16秒前
16秒前
17秒前
上官若男应助cyj采纳,获得10
17秒前
18秒前
19秒前
19秒前
任性的傲柏完成签到,获得积分10
19秒前
曲幻梅发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Schifanoia : notizie dell'istituto di studi rinascimentali di Ferrara : 66/67, 1/2, 2024 1000
苯丙氨酸解氨酶的祖先序列重建及其催化性能 700
Circulating tumor DNA from blood and cerebrospinal fluid in DLBCL: simultaneous evaluation of mutations, IG rearrangement, and IG clonality 500
Food Microbiology - An Introduction (5th Edition) 500
Laboratory Animal Technician TRAINING MANUAL WORKBOOK 2012 edtion 400
Progress and Regression 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4849666
求助须知:如何正确求助?哪些是违规求助? 4149102
关于积分的说明 12852152
捐赠科研通 3896396
什么是DOI,文献DOI怎么找? 2141642
邀请新用户注册赠送积分活动 1161158
关于科研通互助平台的介绍 1061225