LIDD-YOLO: A Lightweight Industrial Defect Detection Network

计算机科学 瓶颈 棱锥(几何) 核(代数) 联营 架空(工程) 人工智能 可分离空间 模式识别(心理学) 嵌入式系统 数学 数学分析 几何学 组合数学 操作系统
作者
Shen Luo,Yuanping Xu,Chaolong Zhang,Jin Jin,Chao Kong,Zhijie Xu,Benjun Guo,Dan Tang,Yanlong Cao
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad9d65
摘要

Abstract Surface defect detection is crucial in industrial production, and due to the conveyor speed, real-time detection requires 30 to 60 Frames Per Second, which exceeds the capability of most existing methods. This demand for high FPS has driven the need for lightweight detection models. Despite significant advancements in deep learning-based detection that have enabled single-stage models such as the YOLO series to achieve relatively fast detection, existing methods still face challenges in detecting multi-scale defects and tiny defects on complex surfaces while maintaining detection speed. This study proposes a lightweight single-stage detection model called Lightweight Industrial Defect Detection Network with improved YOLO architecture for high-precision and real-time industrial defect detection. Firstly, we propose the Large Separable Kernel Spatial Pyramid Pooling module, which is a spatial pyramid pooling structure with a separable large kernel attention mechanism, significantly improving the detection rate of multi-scale defects and enhancing the detection rate of small target defects. Secondly, we improved the Backbone and Neck structure of YOLOv8n with Dual convolutional kernel Convolution and enhanced the faster implementation of Cross Stage Partial Bottleneck with 2 Convolutions (C2f) module in the Neck structure with Ghost Convolution and Decoupled Fully Connected (DFC) attention, reducing the computational and parameter overhead of the model while ensuring detection accuracy. Experimental results on the NEU-DET steel defect datasets and PCB defect datasets demonstrate that compared to YOLOv8n, LIDD-YOLO improves the recognition rate of multi-scale defects and small target defects while meeting lightweight requirements. LIDD-YOLO achieves a 3.2% increase in mean Average Precision (mAP) on the NEU-DET steel defect dataset, reaching 79.5%, and a 2.6% increase in mAP on the small target PCB defect dataset, reaching 93.3%. Moreover, it reduces the parameter count by 20.0% and Floating Point Operations by 15.5%, further meeting the requirements for lightweight and high-precision industrial defect detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奋斗初南完成签到,获得积分10
刚刚
dwfwq完成签到,获得积分10
刚刚
ziyuexu发布了新的文献求助10
1秒前
鄢廷芮发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
NexusExplorer应助专注的语堂采纳,获得10
2秒前
张才豪完成签到,获得积分10
3秒前
OO完成签到,获得积分20
3秒前
mix发布了新的文献求助10
4秒前
王彤彤发布了新的文献求助10
4秒前
陈瑶发布了新的文献求助10
6秒前
123发布了新的文献求助10
7秒前
孟龙威发布了新的文献求助10
7秒前
凉茶完成签到,获得积分10
8秒前
柚子完成签到 ,获得积分10
9秒前
SciGPT应助会化蝶采纳,获得30
9秒前
9秒前
抱小熊睡觉完成签到,获得积分10
11秒前
香蕉觅云应助123采纳,获得10
12秒前
天天快乐应助没有花活儿采纳,获得10
12秒前
13秒前
CR7应助王彤彤采纳,获得10
13秒前
李政卓发布了新的文献求助10
13秒前
慕青应助剑履上殿采纳,获得10
13秒前
skyelee发布了新的文献求助10
13秒前
芋头完成签到,获得积分10
14秒前
852应助花花采纳,获得10
15秒前
孟龙威完成签到,获得积分10
16秒前
Jasper应助wangayting采纳,获得10
17秒前
17秒前
18秒前
裂头蚴完成签到,获得积分10
19秒前
露露发布了新的文献求助10
19秒前
Ha完成签到,获得积分10
19秒前
20秒前
20秒前
可乐发布了新的文献求助10
21秒前
剑履上殿发布了新的文献求助10
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 1370
Secondary Ion Mass Spectrometry: Basic Concepts, Instrumental Aspects, Applications and Trends 1000
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
[Relativity of the 5-year follow-up period as a criterion for cured cancer] 500
Statistical Analysis of fMRI Data, second edition (Mit Press) 2nd ed 500
Sellars and Davidson in Dialogue 500
Huang‘s catheter ablation of cardiac arrthymias 5th edtion 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3941915
求助须知:如何正确求助?哪些是违规求助? 3487326
关于积分的说明 11042960
捐赠科研通 3217730
什么是DOI,文献DOI怎么找? 1778405
邀请新用户注册赠送积分活动 864221
科研通“疑难数据库(出版商)”最低求助积分说明 799343