LIDD-YOLO: a lightweight industrial defect detection network

计算机科学 瓶颈 棱锥(几何) 核(代数) 联营 架空(工程) 人工智能 可分离空间 模式识别(心理学) 嵌入式系统 数学 几何学 操作系统 组合数学 数学分析
作者
Shen Luo,Yuanping Xu,Chaolong Zhang,Jin Jin,Chao Kong,Zhijie Xu,Benjun Guo,Dan Tang,Yanlong Cao
出处
期刊:Measurement Science and Technology [IOP Publishing]
卷期号:36 (1): 0161b5-0161b5 被引量:12
标识
DOI:10.1088/1361-6501/ad9d65
摘要

Abstract Surface defect detection is crucial in industrial production, and due to the conveyor speed, real-time detection requires 30–60 frames per second (FPS), which exceeds the capability of most existing methods. This demand for high FPS has driven the need for lightweight detection models. Despite significant advancements in deep learning-based detection that have enabled single-stage models such as the you only look once (YOLO) series to achieve relatively fast detection, existing methods still face challenges in detecting multi-scale defects and tiny defects on complex surfaces while maintaining detection speed. This study proposes a lightweight single-stage detection model called lightweight industrial defect detection network with improved YOLO architecture (LIDD-YOLO) for high-precision and real-time industrial defect detection. Firstly, we propose the large separable kernel spatial pyramid pooling (SPP) module, which is a SPP structure with a separable large kernel attention mechanism, significantly improving the detection rate of multi-scale defects and enhancing the detection rate of small target defects. Secondly, we improved the Backbone and Neck structure of YOLOv8n with dual convolutional (Dual Conv) kernel convolution and enhanced the faster implementation of Cross Stage Partial Bottleneck with 2 Convolutions (C2f) module in the Neck structure with ghost convolution and decoupled fully connected (DFC) attention, reducing the computational and parameter overhead of the model while ensuring detection accuracy. Experimental results on the NEU-DET steel defect datasets and printed circuit board (PCB) defect datasets demonstrate that compared to YOLOv8n, LIDD-YOLO improves the recognition rate of multi-scale defects and small target defects while meeting lightweight requirements. LIDD-YOLO achieves a 3.2% increase in mean average precision (mAP) on the NEU-DET steel defect dataset, reaching 79.5%, and a 2.6% increase in mAP on the small target PCB defect dataset, reaching 93.3%. Moreover, it reduces the parameter count by 20.0% and floating point operations by 15.5%, further meeting the requirements for lightweight and high-precision industrial defect detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
Haier完成签到,获得积分10
刚刚
lm完成签到,获得积分10
刚刚
LIUC发布了新的文献求助10
1秒前
小凉完成签到,获得积分10
1秒前
1秒前
哇哈完成签到 ,获得积分10
2秒前
2秒前
zp发布了新的文献求助10
2秒前
俊逸鹏笑完成签到,获得积分10
3秒前
杨一发布了新的文献求助10
3秒前
3秒前
3秒前
66完成签到 ,获得积分10
4秒前
芋圆应助甜的瓜采纳,获得10
4秒前
科研通AI2S应助努力发文章采纳,获得10
5秒前
6秒前
6秒前
有且仅有完成签到,获得积分10
7秒前
打打应助轮回1奇点采纳,获得10
7秒前
量子星尘发布了新的文献求助10
8秒前
海比天蓝发布了新的文献求助10
8秒前
BeautyZ完成签到,获得积分10
8秒前
8秒前
大模型应助子凯采纳,获得10
9秒前
等风来发布了新的文献求助10
9秒前
10秒前
思思完成签到,获得积分10
10秒前
zhouxu完成签到,获得积分10
10秒前
麦兜将军发布了新的文献求助10
10秒前
CipherSage应助拉长的蓝采纳,获得10
11秒前
12秒前
keyanling完成签到,获得积分20
13秒前
深情安青应助柚子苏采纳,获得10
13秒前
13秒前
LIUC完成签到,获得积分20
14秒前
BeautyZ发布了新的文献求助10
15秒前
15秒前
传奇3应助程霜采纳,获得10
15秒前
1412发布了新的文献求助10
15秒前
刘大力发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1041
Mentoring for Wellbeing in Schools 1000
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5492786
求助须知:如何正确求助?哪些是违规求助? 4590743
关于积分的说明 14431959
捐赠科研通 4523251
什么是DOI,文献DOI怎么找? 2478238
邀请新用户注册赠送积分活动 1463283
关于科研通互助平台的介绍 1436014