LIDD-YOLO: A Lightweight Industrial Defect Detection Network

计算机科学 瓶颈 棱锥(几何) 核(代数) 联营 架空(工程) 人工智能 可分离空间 模式识别(心理学) 嵌入式系统 数学 数学分析 几何学 组合数学 操作系统
作者
Shen Luo,Yuanping Xu,Chaolong Zhang,Jin Jin,Chao Kong,Zhijie Xu,Benjun Guo,Dan Tang,Yanlong Cao
出处
期刊:Measurement Science and Technology [IOP Publishing]
标识
DOI:10.1088/1361-6501/ad9d65
摘要

Abstract Surface defect detection is crucial in industrial production, and due to the conveyor speed, real-time detection requires 30 to 60 Frames Per Second, which exceeds the capability of most existing methods. This demand for high FPS has driven the need for lightweight detection models. Despite significant advancements in deep learning-based detection that have enabled single-stage models such as the YOLO series to achieve relatively fast detection, existing methods still face challenges in detecting multi-scale defects and tiny defects on complex surfaces while maintaining detection speed. This study proposes a lightweight single-stage detection model called Lightweight Industrial Defect Detection Network with improved YOLO architecture for high-precision and real-time industrial defect detection. Firstly, we propose the Large Separable Kernel Spatial Pyramid Pooling module, which is a spatial pyramid pooling structure with a separable large kernel attention mechanism, significantly improving the detection rate of multi-scale defects and enhancing the detection rate of small target defects. Secondly, we improved the Backbone and Neck structure of YOLOv8n with Dual convolutional kernel Convolution and enhanced the faster implementation of Cross Stage Partial Bottleneck with 2 Convolutions (C2f) module in the Neck structure with Ghost Convolution and Decoupled Fully Connected (DFC) attention, reducing the computational and parameter overhead of the model while ensuring detection accuracy. Experimental results on the NEU-DET steel defect datasets and PCB defect datasets demonstrate that compared to YOLOv8n, LIDD-YOLO improves the recognition rate of multi-scale defects and small target defects while meeting lightweight requirements. LIDD-YOLO achieves a 3.2% increase in mean Average Precision (mAP) on the NEU-DET steel defect dataset, reaching 79.5%, and a 2.6% increase in mAP on the small target PCB defect dataset, reaching 93.3%. Moreover, it reduces the parameter count by 20.0% and Floating Point Operations by 15.5%, further meeting the requirements for lightweight and high-precision industrial defect detection models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
3秒前
爆裂鼓手完成签到,获得积分10
3秒前
shuofeng完成签到 ,获得积分10
5秒前
5秒前
zgt01应助ti采纳,获得20
5秒前
科研通AI5应助幸福采纳,获得10
6秒前
joe55667788发布了新的文献求助10
7秒前
哈哈哈发布了新的文献求助10
8秒前
8秒前
9秒前
9秒前
9秒前
亚马尔完成签到,获得积分10
13秒前
joe55667788完成签到,获得积分10
14秒前
荆月竹发布了新的文献求助10
14秒前
专注白安发布了新的文献求助10
14秒前
李振华发布了新的文献求助10
14秒前
田恬完成签到,获得积分10
15秒前
小可爱发布了新的文献求助10
15秒前
北落师门完成签到,获得积分10
16秒前
16秒前
英姑应助超级的羽毛采纳,获得10
17秒前
Orange应助Ari_Kun采纳,获得10
17秒前
18秒前
18秒前
现在到未来完成签到,获得积分10
19秒前
荆月竹完成签到,获得积分10
20秒前
领导范儿应助正直涔雨采纳,获得10
20秒前
悦耳海鸥发布了新的文献求助30
21秒前
彭瞻完成签到 ,获得积分10
21秒前
22秒前
啄春泥发布了新的文献求助10
22秒前
25秒前
Laura完成签到,获得积分10
25秒前
滋滋完成签到,获得积分10
26秒前
FashionBoy应助高逸涵采纳,获得10
27秒前
幸福发布了新的文献求助10
28秒前
29秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Technologies supporting mass customization of apparel: A pilot project 450
A China diary: Peking 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3784400
求助须知:如何正确求助?哪些是违规求助? 3329418
关于积分的说明 10242254
捐赠科研通 3044938
什么是DOI,文献DOI怎么找? 1671417
邀请新用户注册赠送积分活动 800346
科研通“疑难数据库(出版商)”最低求助积分说明 759342