人工神经网络
膜
电解
材料科学
微观结构
曲折
生物系统
计算
多孔性
聚合物
计算机科学
人工智能
算法
化学
电极
复合材料
电解质
生物
物理化学
生物化学
作者
Xintao Deng,Yingpeng Zhao,Fuyuan Yang,Yangyang Li,Minggao Ouyang
标识
DOI:10.1021/acsapm.4c02913
摘要
Aiming at a polymeric porous membrane applied in the field of electrochemistry, especially alkaline water electrolysis, this paper combines polymer network microstructure prediction, characterization, high-throughput computation, and artificial neural networks to predict the performance of the membrane by material intrinsic characteristics and manufacturing parameters. Through the joint use of principal component analysis, fully connected neural networks, and convolutional neural networks, the microstructure tortuosity and maximum pore size can be predicted at the accuracy of R2 = 0.746 and R2 = 0.886, respectively. The influence of input parameters on performances is further analyzed, and several algorithms are utilized for parameter optimization of membrane manufacturing. The optimal parameters are implemented to a hand-cast membrane, which surpasses a commercialized membrane in certain aspects.
科研通智能强力驱动
Strongly Powered by AbleSci AI