医学
先天性膈疝
膈疝
膈式呼吸
产前诊断
血管内皮生长因子受体
疝
内科学
外科
胎儿
怀孕
病理
遗传学
替代医学
生物
作者
Stavros Loukogeorgakis,Federica Michielin,Noura Al‐Juffali,Julio Jiménez,Soichi Shibuya,Jessica Allen-Hyttinen,Mary Patrice Eastwood,Ahmed Alhendi,Joseph R. Davidson,Eleonora Naldi,Panagiotis Maghsoudlou,Alfonso Tedeschi,S Khalaf,Manuela Platé,Camila Girardi Fachin,Andre Dos Santos Dias,Nikhil Sindhwani,Dominic Scaglioni,Theodoros Xenakis,Neil J. Sebire
标识
DOI:10.1164/rccm.202401-0161oc
摘要
Congenital diaphragmatic hernia (CDH) results in lung hypoplasia. In severe cases, tracheal occlusion (TO) can be offered to promote lung growth. However the benefit is limited, and novel treatments are required to supplement TO. Vascular endothelial growth factor (VEGF) is downregulated in animal models of CDH and could be a therapeutic target, but its role in human CDH is not known. To investigate whether VEGF supplementation could be a suitable treatment for CDH-associated lung pathology. Fetal lungs from CDH patients were used to determine pulmonary morphology and VEGF expression. A novel human ex vivo model of fetal lung compression recapitulating CDH features was developed and used to determine the effect of exogenous VEGF supplementation. A nanoparticle-based approach for intra-pulmonary delivery of VEGF was developed by conjugating it on functionalized nanodiamonds (ND-VEGF) and was tested in experimental CDH in vivo. VEGF expression was downregulated in distal pulmonary epithelium of human CDH fetuses in conjunction with attenuated cell proliferation. The compression model resulted in impaired branching morphogenesis similar to CDH and downregulation of VEGF expression in conjunction with reduced proliferation of terminal bud epithelial progenitors; these could be reversed by exogenous supplementation of VEGF. Prenatal delivery of VEGF with the ND-VEGF platform in CDH fetal rats resulted in lung growth and pulmonary arterial remodelling that was complementary to that achieved by TO alone with appearances comparable to healthy controls. This innovative approach could have a significant impact on the treatment of CDH.
科研通智能强力驱动
Strongly Powered by AbleSci AI