WRKY蛋白质结构域
拟南芥
组蛋白脱乙酰基酶
发起人
转录因子
异位表达
耐旱性
非生物胁迫
组蛋白
细胞生物学
生物
植物
遗传学
基因表达
基因
突变体
作者
Tianyu Dong,Yueran Hu,Jiao Wang,Ying Wang,Peilei Chen,Jingjing Xing,Hongying Duan
标识
DOI:10.1016/j.ijbiomac.2024.129971
摘要
Soil drought and salinization, caused by water deficiency, have become the greatest concerns limiting crop production. Up to now, the WRKY transcription factor and histone deacetylase have been shown to be involved in drought and salt responses. However, the molecular mechanism underlying their interaction remains unclear in cotton. Herein, we identified GhWRKY4, a member of WRKY gene family, which is induced by drought and salt stress and is located in the nucleus. The ectopic expression of GhWRKY4 in Arabidopsis enhanced drought and salt tolerance, and suppressing GhWRKY4 in cotton increased susceptibility to drought and salinity. Subsequently, DAP-seq analysis revealed that the W box element in the promoter of stress-induced genes could potentially be the binding target for GhWRKY4 protein. GhWRKY4 binds to the promoters of GhHDA8 and GhNHX7 via W box element, and the expression level of GhHDA8 was increased in GhWRKY4-silenced plants. In addition, GhHDA8-overexpressed Arabidopsis were found to be hypersensitive to drought and salt stress, while silencing of GhHDA8 enhanced drought and salt tolerance in cotton. The stress-related genes, such as GhDREB2A, GhRD22, GhP5CS, and GhNHX7, were induced in GhHDA8-silenced plants. Our findings indicate that the GhWRKY4-GhHDA8 module regulates drought and salt tolerance in cotton. Collectively, the results provide new insights into the coordination of transcription factors and histone deacetylases in regulating drought and salt stress responses in plants.
科研通智能强力驱动
Strongly Powered by AbleSci AI