ARS-DETR: Aspect Ratio-Sensitive Detection Transformer for Aerial Oriented Object Detection

目标检测 计算机科学 遥感 计算机视觉 人工智能 模式识别(心理学) 地质学
作者
Ying Zeng,Yushi Chen,Xue Yang,Qingyun Li,Junchi Yan
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:62: 1-15 被引量:16
标识
DOI:10.1109/tgrs.2024.3364713
摘要

Existing oriented object detection in aerial images has progressed a lot in recent years and achieved a favorable success. However, high-precision oriented object detection in aerial images remains a challenging task. Some recent works have adopted the classification-based method to predict the angle in order to address boundary problem in angle. However, we have found that these works often neglect the sensitivity of objects with different aspect ratios to angle. At the same time, it is worth exploring a suitable way to improve the emerging transformer-based approaches in order to adapt them to oriented object detection. In this paper, we propose an Aspect Ratio Sensitive DEtection TRansformer, termed ARS-DETR, for oriented object detection in aerial images. Specifically, a new angle classification method, called Aspect Ratio aware Circle Smooth Label (AR-CSL), is proposed to smooth the angle label in a more reasonable way and discard the hyperparameter that introduced by previous work (e.g. CSL). Then, a rotated deformable attention module is designed to rotate the sampling points with the corresponding angles and eliminate the misalignment between region features and sampling points. Moreover, a dynamic weight coefficient according to the aspect ratio is adopted to calculate the angle loss. Comprehensive experiments on several challenging datasets demonstrate that our method achieves a competitive performance in the high-precision oriented object detection task.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
落叶解三秋完成签到,获得积分10
1秒前
丘比特应助木木采纳,获得30
1秒前
2秒前
尹尹尹发布了新的文献求助10
2秒前
洁净灭男完成签到,获得积分10
2秒前
赵博完成签到,获得积分20
3秒前
LM完成签到,获得积分10
7秒前
sszz发布了新的文献求助10
7秒前
7秒前
HY完成签到 ,获得积分10
7秒前
8秒前
爆米花应助多情的绮波采纳,获得10
8秒前
SciGPT应助尹尹尹采纳,获得10
11秒前
12秒前
Jasper应助幽默科研人采纳,获得10
12秒前
七濑发布了新的文献求助10
12秒前
传奇3应助金熙美采纳,获得10
13秒前
13秒前
激动的小之完成签到,获得积分10
13秒前
FashionBoy应助机灵寄灵采纳,获得10
13秒前
oxear应助呆萌凤采纳,获得10
13秒前
15秒前
Shantx完成签到,获得积分10
16秒前
dox驳回了核桃应助
17秒前
qwh发布了新的文献求助10
18秒前
19秒前
赵博发布了新的文献求助30
20秒前
科研通AI5应助眠航采纳,获得10
20秒前
20秒前
liu发布了新的文献求助10
23秒前
23秒前
hahahaman发布了新的文献求助10
24秒前
科研狂魔应助科研通管家采纳,获得10
26秒前
老阎应助科研通管家采纳,获得30
26秒前
星辰大海应助科研通管家采纳,获得10
26秒前
佩楠发布了新的文献求助10
26秒前
打打应助科研通管家采纳,获得10
26秒前
科研狂魔应助科研通管家采纳,获得10
26秒前
小二郎应助科研通管家采纳,获得10
26秒前
小蘑菇应助科研通管家采纳,获得10
26秒前
高分求助中
Handbook of Diagnosis and Treatment of DSM-5-TR Personality Disorders (2025, 4th edition) 800
Algorithmic Mathematics in Machine Learning 500
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
The Monocyte-to-HDL ratio (MHR) as a prognostic and diagnostic biomarker in Acute Ischemic Stroke: A systematic review with meta-analysis (P9-14.010) 240
半导体金属氧化物纳米材料:合成、气敏特性及气体传感应用 200
Pleistocene Mammals of North America 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3832793
求助须知:如何正确求助?哪些是违规求助? 3375262
关于积分的说明 10488176
捐赠科研通 3094858
什么是DOI,文献DOI怎么找? 1704025
邀请新用户注册赠送积分活动 819723
科研通“疑难数据库(出版商)”最低求助积分说明 771623