MTD-YOLO: Multi-task deep convolutional neural network for cherry tomato fruit bunch maturity detection

卷积神经网络 任务(项目管理) 成熟度 人工智能 交叉口(航空) 一般化 计算机科学 判别式 机器学习 模式识别(心理学) 工程类 数学 园艺 成熟 数学分析 系统工程 生物 航空航天工程
作者
Wenbai Chen,Mengchen Liu,Chunjiang Zhao,Xingxu Li,Yiqun Wang
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:216: 108533-108533 被引量:42
标识
DOI:10.1016/j.compag.2023.108533
摘要

In recent years, the escalating labor costs in agricultural production have emerged as a major concern. The use of inspection robots to achieve automated inspection of fruit and fruit bunches for ripeness not only enhances production efficiency and cost savings, but also simplifies the tasks for workers. To address this issue, an improved YOLOv7-based multi-task deep convolutional neural network (DCNN) detection model, called MTD-YOLOv7, is proposed in this paper. Initially, the dataset labels were expanded to meet the requirements of multi-task classification. Two additional decoders were then added on the basis of YOLOv7 to detect tomato fruit clusters, fruit maturity and cluster maturity. Subsequently, the loss function was designed based on the characteristics of multi-task and the Scale-Sensitive Intersection over Union (SIoU) was used instead of Complete Intersection over Union (CIoU) to improve the model’s recognition accuracy. Finally, to verify the effectiveness of the algorithm, tests were conducted on the cherry tomato dataset, and comparisons were made with common target detection algorithms, classification models, and cascade models. The experimental findings reveal that MTD-YOLOv7 achieved an overall score of 86.6% in multi-task learning, with an average inference time of 4.9 ms (RTX3080). It excels in simultaneous detection of cherry tomato fruits and bunches, fruit maturity, and bunch maturity, offering exceptional precision, rapid detection, and robust generalization capabilities. Its suitability extends to various applications, notably in inspection tasks.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
鲤鱼书白发布了新的文献求助10
刚刚
Ankher应助激动的水桃采纳,获得10
1秒前
兰瓜瓜完成签到,获得积分10
2秒前
2秒前
zhang发布了新的文献求助10
2秒前
梅梅梅完成签到,获得积分10
2秒前
2秒前
胸有激雷面如平湖完成签到,获得积分10
3秒前
小透明发布了新的文献求助10
3秒前
年轻小之完成签到 ,获得积分10
3秒前
斯文冷亦发布了新的文献求助10
4秒前
xuuuuu发布了新的文献求助10
4秒前
4秒前
在下废物发布了新的文献求助10
4秒前
HJJHJH完成签到,获得积分10
4秒前
4秒前
无花果应助噢噢噢噢采纳,获得10
5秒前
5秒前
小二郎应助舒心的芸采纳,获得10
6秒前
6秒前
6秒前
275891672发布了新的文献求助10
6秒前
高兴绿柳完成签到 ,获得积分10
7秒前
郭慧娜完成签到,获得积分10
7秒前
fyl发布了新的文献求助10
8秒前
俭朴青烟发布了新的文献求助10
9秒前
桐桐应助Xie采纳,获得10
9秒前
执着谷兰应助mark2021采纳,获得10
9秒前
WAKAKA发布了新的文献求助10
9秒前
好运莲莲完成签到,获得积分10
10秒前
轻松的小白菜完成签到,获得积分10
10秒前
10秒前
阿洋发布了新的文献求助10
10秒前
NexusExplorer应助LYDZ2采纳,获得10
11秒前
上上谦发布了新的文献求助10
11秒前
afat完成签到,获得积分10
12秒前
顾矜应助活力盼晴采纳,获得10
12秒前
yef发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
F-35B V2.0 How to build Kitty Hawk's F-35B Version 2.0 Model 2500
줄기세포 생물학 1000
The Netter Collection of Medical Illustrations: Digestive System, Volume 9, Part III - Liver, Biliary Tract, and Pancreas (3rd Edition) 600
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
2025-2031全球及中国蛋黄lgY抗体行业研究及十五五规划分析报告(2025-2031 Global and China Chicken lgY Antibody Industry Research and 15th Five Year Plan Analysis Report) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4490817
求助须知:如何正确求助?哪些是违规求助? 3944454
关于积分的说明 12232052
捐赠科研通 3601450
什么是DOI,文献DOI怎么找? 1980705
邀请新用户注册赠送积分活动 1017654
科研通“疑难数据库(出版商)”最低求助积分说明 910573