龙葵
化学
糖基转移酶
生物化学
酶
生物合成
植物
生物
标识
DOI:10.1002/biot.202300628
摘要
Bioconversion of Rebaudioside D faces high-cost obstacles. Herein, a novel glycosyltransferase StUGT converting Rebaudioside A to Rebaudioside D was screened and characterized, which exhibits stronger affinity and substrate specificity for Rebaudioside A than previously reported enzymes. A whole-cell catalytic system was thus developed using the StUGT strain. The production of Rebaudioside D was enhanced significantly by enhancing cell permeability, and the maximum production of 6.12 g/L and the highest yield of 98.08% by cell catalyst was obtained by statistical-based optimization. A new cascade process utilizing this recombinant strain and E. coli expressing sucrose synthase was further established to reduce cost through replacing expensive UDPG with sucrose. A StUGT-GsSUS1 system exhibited high catalytic capability, and 5.27 g L
科研通智能强力驱动
Strongly Powered by AbleSci AI